Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunohorizons ; 7(6): 508-527, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37358499

RESUMO

Identifying SARS-CoV-2-specific T cell epitope-derived peptides is critical for the development of effective vaccines and measuring the duration of specific SARS-CoV-2 cellular immunity. In this regard, we previously identified T cell epitope-derived peptides within topologically and structurally essential regions of SARS-CoV-2 spike and nucleocapsid proteins by applying an immunoinformatics pipeline. In this study, we selected 30 spike- and nucleocapsid-derived peptides and assessed whether these peptides induce T cell responses and avoid major mutations found in SARS-CoV-2 variants of concern. Our peptide pool was highly specific, with only a single peptide driving cross-reactivity in people unexposed to SARS-COV-2, and immunogenic, inducing a polyfunctional response in CD4+ and CD8+ T cells from COVID-19 recovered individuals. All peptides were immunogenic and individuals recognized broad and diverse peptide repertoires. Moreover, our peptides avoided most mutations/deletions associated with all four SARS-CoV-2 variants of concern while retaining their physicochemical properties even when genetic changes are introduced. This study contributes to an evolving definition of individual CD4+ and CD8+ T cell epitopes that can be used for specific diagnostic tools for SARS-CoV-2 T cell responses and is relevant to the development of variant-resistant and durable T cell-stimulating vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Epitopos de Linfócito T , Peptídeos
2.
J Biol Chem ; 297(1): 100834, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051231

RESUMO

The prevalence of autoimmune diseases is on the rise globally. Currently, autoimmunity presents in over 100 different forms and affects around 9% of the world's population. Current treatments available for autoimmune diseases are inadequate, expensive, and tend to focus on symptom management rather than cure. Clinical trials have shown that live helminthic therapy can decrease chronic inflammation associated with inflammatory bowel disease and other gastrointestinal autoimmune inflammatory conditions. As an alternative and better controlled approach to live infection, we have identified and characterized two peptides, Acan1 and Nak1, from the excretory/secretory component of parasitic hookworms for their therapeutic activity on experimental colitis. We synthesized Acan1 and Nak1 peptides from the Ancylostoma caninum and Necator americanus hookworms and assessed their structures and protective properties in human cell-based assays and in a mouse model of acute colitis. Acan1 and Nak1 displayed anticolitic properties via significantly reducing weight loss and colon atrophy, edema, ulceration, and necrosis in 2,4,6-trinitrobenzene sulfonic acid-exposed mice. These hookworm peptides prevented mucosal loss of goblet cells and preserved intestinal architecture. Acan1 upregulated genes responsible for the repair and restitution of ulcerated epithelium, whereas Nak1 downregulated genes responsible for epithelial cell migration and apoptotic cell signaling within the colon. These peptides were nontoxic and displayed key immunomodulatory functions in human peripheral blood mononuclear cells by suppressing CD4+ T cell proliferation and inhibiting IL-2 and TNF production. We conclude that Acan1 and Nak1 warrant further development as therapeutics for the treatment of autoimmunity, particularly gastrointestinal inflammatory conditions.


Assuntos
Ancylostomatoidea/química , Colite/tratamento farmacológico , Colite/prevenção & controle , Leucócitos/imunologia , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Ancylostoma , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Intestinos/patologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/metabolismo , Leucócitos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Necator americanus , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Análise de Componente Principal , Domínios Proteicos , Dobramento de Proteína , Linfócitos T/citologia , Ácido Trinitrobenzenossulfônico , Xenopus laevis
3.
J Nat Prod ; 83(11): 3454-3463, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33166137

RESUMO

Marine organisms produce a diverse range of toxins and bioactive peptides to support predation, competition, and defense. The peptide repertoires of stony corals (order Scleractinia) remain relatively understudied despite the presence of tentacles used for predation and defense that are likely to contain a range of bioactive compounds. Here, we show that a tentacle extract from the mushroom coral, Heliofungia actiniformis, contains numerous peptides with a range of molecular weights analogous to venom profiles from species such as cone snails. Using NMR spectroscopy and mass spectrometry we characterized a 12-residue peptide (Hact-1) with a new sequence (GCHYTPFGLICF) and well-defined ß-hairpin structure stabilized by a single disulfide bond. The sequence is encoded within the genome of the coral and expressed in the polyp body tissue. The structure present is common among toxins and venom peptides, but Hact-1 does not show activity against select examples of Gram-positive and Gram-negative bacteria or a range of ion channels, common properties of such peptides. Instead, it appears to have a limited effect on human peripheral blood mononuclear cells, but the ecological function of the peptide remains unknown. The discovery of this peptide from H. actiniformis is likely to be the first of many from this and related species.


Assuntos
Antozoários/química , Antibacterianos/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Peptídeos/farmacologia
4.
J Clin Invest ; 128(4): 1569-1580, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29528337

RESUMO

Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic "mimics" using subunits that do not exist in the natural world. We developed a platform based on D-amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus-specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery.


Assuntos
Materiais Biomiméticos , Vírus da Influenza A/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Biblioteca de Peptídeos , Vacinação , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Cultivadas , Humanos , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle
5.
J Immunol ; 200(7): 2263-2279, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29483360

RESUMO

Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Coloração e Rotulagem/métodos , Citomegalovirus/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Ativação Linfocitária/imunologia , Melanoma/imunologia , Orthomyxoviridae/imunologia , Ligação Proteica/imunologia , Inibidores de Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/imunologia , Células Tumorais Cultivadas
6.
Proc Natl Acad Sci U S A ; 113(37): E5454-63, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573839

RESUMO

Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR-CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR-CD3 complexes. We found that only TCR-CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR-pMHC affinity determined the density of TCR-CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR-CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination.


Assuntos
Antígenos/imunologia , Complexo CD3/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Imunidade Adaptativa/genética , Animais , Antígenos/genética , Humanos , Camundongos , Peptídeos/imunologia , Fosforilação/imunologia , Transdução de Sinais , Imagem Individual de Molécula
7.
Immunology ; 146(1): 11-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26076649

RESUMO

Analysis of antigen-specific T-cell populations by flow cytometry with peptide-MHC (pMHC) multimers is now commonplace. These reagents allow the tracking and phenotyping of T cells during infection, autoimmunity and cancer, and can be particularly revealing when used for monitoring therapeutic interventions. In 2009, we reviewed a number of 'tricks' that could be used to improve this powerful technology. More recent advances have demonstrated the potential benefits of using higher order multimers and of 'boosting' staining by inclusion of an antibody against the pMHC multimer. These developments now allow staining of T cells where the interaction between the pMHC and the T-cell receptor is over 20-fold weaker (K(D) > 1 mm) than could previously be achieved. Such improvements are particularly relevant when using pMHC multimers to stain anti-cancer or autoimmune T-cell populations, which tend to bear lower affinity T-cell receptors. Here, we update our previous work to include discussion of newer tricks that can produce substantially brighter staining even when using log-fold lower concentrations of pMHC multimer. We further provide a practical guide to using pMHC multimers that includes a description of several common pitfalls and how to circumvent them.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Coloração e Rotulagem/métodos , Anticorpos/imunologia , Linfócitos T CD8-Positivos/citologia , Citometria de Fluxo/métodos , Corantes Fluorescentes , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Peptídeos/imunologia , Multimerização Proteica
8.
J Immunol ; 194(1): 463-74, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452566

RESUMO

Fluorochrome-conjugated peptide-MHC (pMHC) multimers are commonly used in combination with flow cytometry for direct ex vivo visualization and characterization of Ag-specific T cells, but these reagents can fail to stain cells when TCR affinity and/or TCR cell-surface density are low. pMHC multimer staining of tumor-specific, autoimmune, or MHC class II-restricted T cells can be particularly challenging, as these T cells tend to express relatively low-affinity TCRs. In this study, we attempted to improve staining using anti-fluorochrome unconjugated primary Abs followed by secondary staining with anti-Ab fluorochrome-conjugated Abs to amplify fluorescence intensity. Unexpectedly, we found that the simple addition of an anti-fluorochrome unconjugated Ab during staining resulted in considerably improved fluorescence intensity with both pMHC tetramers and dextramers and with PE-, allophycocyanin-, or FITC-based reagents. Importantly, when combined with protein kinase inhibitor treatment, Ab stabilization allowed pMHC tetramer staining of T cells even when the cognate TCR-pMHC affinity was extremely low (KD >1 mM) and produced the best results that we have observed to date. We find that this inexpensive addition to pMHC multimer staining protocols also allows improved recovery of cells that have recently been exposed to Ag, improvements in the recovery of self-specific T cells from PBMCs or whole-blood samples, and the use of less reagent during staining. In summary, Ab stabilization of pMHC multimers during T cell staining extends the range of TCR affinities that can be detected, yields considerably enhanced staining intensities, and is compatible with using reduced amounts of these expensive reagents.


Assuntos
Citometria de Fluxo/métodos , Imunofluorescência/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Coloração e Rotulagem/métodos , Linfócitos T/imunologia , Anticorpos/química , Anticorpos/imunologia , Células Cultivadas , Corantes Fluorescentes/química , Humanos , Ficocianina/química , Ligação Proteica/imunologia , Inibidores de Proteínas Quinases/farmacologia , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA