Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 151: 189-194, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30880124

RESUMO

Opioid use disorder is a serious public health issue in the United States. Animal models of opioid dependence are fundamental for studying the etiology of addictive behaviors. We tested the hypothesis that extended access to heroin self-administration leads to increases in heroin intake and produces somatic signs of opioid dependence in both male and female mice. Adult C57BL/6J mice were trained to nosepoke (fixed-ratio 1) to obtain intravenous heroin in six daily 1-h sessions (30-60 µg/kg/infusion). The mice were divided into short access (ShA; 1 h) and long access (LgA; 6 h) groups. Immediately after the 10th escalation session, the mice received a challenge dose of naloxone (1 mg/kg), and somatic signs of withdrawal were recorded. The mice readily acquired intravenous heroin self-administration. LgA mice escalated their drug intake in the first hour across sessions and had significantly higher scores of somatic signs of naloxone-precipitated opioid withdrawal compared with ShA mice. Female mice exhibited increases in heroin intake compared with male mice. Male and female mice exhibited similar levels of somatic signs of withdrawal. Because of the wide availability of genetically modified mouse lines, the present mouse model may be particularly useful for better understanding genetic and sex differences that underlie the transition to compulsive-like opioid taking and seeking.


Assuntos
Comportamento Aditivo , Comportamento Animal/efeitos dos fármacos , Dependência de Heroína , Heroína/administração & dosagem , Entorpecentes/administração & dosagem , Animais , Feminino , Masculino , Camundongos , Ratos Wistar , Autoadministração
2.
Neuropsychopharmacology ; 43(4): 801-809, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28812595

RESUMO

Opioid misuse is at historically high levels in the United States, with inhalation (ie, smoking and vaping) being one of the most common routes of consumption. We developed and validated a novel preclinical model of opioid self-administration by inhalation that does not require surgery and reliably produces somatic and motivational signs of dependence. Rats were trained to perform an operant response (nosepoke) to receive 10 s of vaporized sufentanil, a potent opioid, in 2 h daily sessions. Rats readily and concentration-dependently self-administered vaporized sufentanil. Rats exhibited a significant increase in responding for sufentanil when given the preferential µ-opioid receptor inverse agonist naloxone, suggesting the participation of µ-opioid receptors in the reinforcing properties of sufentanil vapor. Serum sufentanil concentrations significantly correlated with the number of sufentanil vapor deliveries. Rats that were given long access (LgA; 12 h/day) but not short access (ShA; 1 h/day) to vaporized sufentanil escalated their drug intake over time and exhibited both naloxone-precipitated somatic signs of opioid withdrawal and spontaneous withdrawal-induced mechanical hypersensitivity. After 6 months of forced drug abstinence, LgA rats returned to pre-escalation baseline levels of responding for sufentanil and mechanical sensitivity. Upon subsequent re-escalation (ie, after the return to extended access to sufentanil vapor), LgA rats again developed naloxone-precipitated somatic signs of withdrawal and spontaneous withdrawal-induced mechanical hypersensitivity. These findings demonstrate that the operant sufentanil vapor self-administration model has both face and construct validity and therefore will be useful for investigating the neurobiological basis of opioid addiction.


Assuntos
Analgésicos Opioides/administração & dosagem , Comportamento Compulsivo/induzido quimicamente , Comportamento Compulsivo/psicologia , Condicionamento Operante/efeitos dos fármacos , Sufentanil/administração & dosagem , Administração por Inalação , Analgésicos Opioides/efeitos adversos , Animais , Condicionamento Operante/fisiologia , Relação Dose-Resposta a Droga , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos , Ratos Wistar , Autoadministração , Sufentanil/efeitos adversos , Volatilização
3.
Int Rev Neurobiol ; 136: 89-119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29056157

RESUMO

In the past years, a significant volume of research has implicated the appetitive hormone ghrelin in the mechanisms underlying drug use and addiction. From a neuroscientific standpoint, ghrelin modulates both reward and stress pathways, two key drivers of substance use behaviors. Previous investigations support a connection between the ghrelin system and alcohol, stimulants, and tobacco use in both animals and humans, while the research on opioids and cannabis is scarce. In general, upregulation of the ghrelin system seems to enhance craving for drugs as well as substances use. On the other hand, acute and chronic exposure to drugs of abuse influences the ghrelin system at different levels. This chapter summarizes the literature on the relationship between the ghrelin system and substance-related behaviors. We also review recent work investigating the ghrelin system as a potential pharmacological target for treating substance use disorders and discuss the need for additional research.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Transtornos Relacionados ao Uso de Álcool/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Grelina/metabolismo , Abuso de Maconha/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Tabagismo/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA