Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570211

RESUMO

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/genética , Células Espumosas , Humanos , Leucócitos Mononucleares , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Pró-Proteína Convertase 9
2.
World J Stem Cells ; 12(11): 1396-1409, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33312406

RESUMO

BACKGROUND: Emerging evidence suggests that the spread of glioma to the subventricular zone (SVZ) is closely related to glioma recurrence and patient survival. Neural stem cells (NSCs) are the main cell type in the SVZ region and exhibit tumor-homing ability. AIM: To evaluate the effects of conditioned medium (CM) derived from SVZ NSCs on the cancer-related behaviors of glioma cells. METHODS: The characteristics of SVZ hNSCs were identified by immunofluorescence. The normoxic-hNSC-CM and hypoxic-hNSC-CM (3% O2, oxygen-glucose deprived [OGD] culturing) were collected from 80%-90% confluent SVZ NSCs in sterile conditions. The CCK8 and Transwell assays were used to compare and evaluate the effects of normoxic-CM and hypoxic-CM on glioma proliferation and invasion. Then proteins secreted from SVZ NSCs into the CM were investigated by mass spectrometry, and the potential effects of candidate protein NCAN in the regulation of glioma progression were examined by CCK8 and Transwell assays. RESULTS: The CM from SVZ NSCs significantly increased the proliferation and invasion of glioma cells, particularly the CM from OGD NSCs induced under hypoxic conditions. Furthermore, the secreted protein neurocan (NCAN) in CM from OGD NSCs was identified by proteomic analysis. NCAN was expressed in glioma cells and played regulatory roles in mediating the progression of glioma cells mainly via the Rho/Rho-associated protein kinase pathway. CONCLUSION: Our study identified a potential interactive mechanism between SVZ NSCs and glioma cells, in which SVZ NSCs promote glioma progression via the secreted protein NCAN. These findings suggested that exploring the CM derived from cells could be a novel strategy for optimizing treatments and that NCAN derived from SVZ NSCs may be a potential new target in glioma progression.

3.
J Neurointerv Surg ; 9(7): 702-706, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27325364

RESUMO

BACKGROUND: Inhibition of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) pathway improves the neurological outcome in the transient middle cerebral artery occlusion (tMCAO) animal model. In this study we analyzed the microRNAs profile targeting NOX2 and NOX4 genes and its response to NOX2/4 inhibitor VAS2870 to understand the mechanisms of this protective effect. METHODS: The intraluminal filament tMCAO model was established in hyperglycemic rats (n=106) with 5 hours ischemia followed by 19 hours reperfusion. NOX inhibitor VAS2870 was delivered intravenously before reperfusion. Infarct volume, hemorrhagic transformation, and mortality were determined at 24 hours after cerebral ischemia. MicroRNAs profile targeting NOX2 and NOX4 genes were predicted by microRNA databases and further evaluated by microRNA microarray and quantitative RT-PCR. RESULTS: Ten microRNAs potentially targeting NOX2 and NOX4 genes (including microRNA-29a, microRNA-29c, microRNA-126a, microRNA-132, microRNA-136, microRNA-138, microRNA-139, microRNA-153, microRNA-337, and microRNA-376a) were significantly downregulated in the ischemic hemisphere in the tMCAO group compared with the sham-operated group, as shown by microRNA microarray and quantitative RT-PCR (all p<0.05). Intravenous treatment with NOX inhibitor VAS2870 before reperfusion increased the expression of microRNA-29a, microRNA-29c, microRNA-126a, and microRNA-132 compared with the tMCAO group (all p<0.05). CONCLUSIONS: Several microRNAs potentially targeting NOX2 and NOX4 genes displayed altered levels in hyperglycemic rats with the tMCAO model, suggesting their regulatory roles and targeting potentials for acute ischemic stroke treatment. Targeting specific microRNAs may represent a novel intervention opportunity to improve outcome and reduce hemorrhagic transformation after mechanical reperfusion for acute ischemic stroke.


Assuntos
Benzoxazóis/farmacologia , Infarto da Artéria Cerebral Média/enzimologia , MicroRNAs/fisiologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Reperfusão/métodos , Triazóis/farmacologia , Animais , Benzoxazóis/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Triazóis/uso terapêutico
4.
J Neurointerv Surg ; 9(5): 492-498, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27075483

RESUMO

BACKGROUND: Severe hemorrhagic transformation (HT) after mechanical thrombectomy predicts a poor clinical outcome in acute ischemic stroke. To better understand the mechanism of HT, we investigated the role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in HT after reperfusion during acute stroke and whether NOX2/4 inhibitor VAS2870 reduces reperfusion-induced HT after mechanical recanalization. METHODS: A model of reperfusion-induced HT was established in rats (n=182) with hyperglycemic challenge and 5 h middle cerebral artery occlusion followed by 19 h reperfusion. NOX inhibitor VAS2870 was delivered intravenously 30 min before reperfusion. Infarct volume, brain water content, HT, neurological score, mortality rate, blood-brain barrier (BBB) damage, neuronal apoptosis, and reactive oxygen species were determined at 24 h after cerebral ischemia. The expressions of NOX1, NOX2, NOX4, and BBB-associated proteins were measured. RESULTS: NOX2 and NOX4 upregulation and severe HT were observed in hyperglycemic rats after cerebral ischemia/reperfusion. VAS2870 suppressed oxidative stress, neuronal apoptosis, and NOX2/4 upregulation in the ischemic hemisphere. VAS2870 reduced infarct volume (17.2±5.3% vs 37.4±9.2%, p<0.01) and the frequency of reperfusion-induced parenchymal hematoma (29.7% vs 59.5%, p<0.05) at 24 h after ischemia compared with the ischemia/reperfusion group. VAS2870 attenuated brain edema and reduced reperfusion-induced BBB breakdown, resulting in improved neurological outcome (neurological deficit score 1.43±0.50 vs 2.43±0.93, p<0.001) and reduced mortality (11.9% vs 64.1%, p<0.001). CONCLUSIONS: NOX2 and NOX4 may mediate HT in rats with large vessel stroke after mechanical reperfusion. Infusion of NOX inhibitor VAS2870 before mechanical thrombectomy represents a novel adjunctive therapeutic strategy to prevent reperfusion-induced HT and improve outcome of acute stroke treatment.


Assuntos
Benzoxazóis/uso terapêutico , Isquemia Encefálica/cirurgia , Hemorragia Cerebral/tratamento farmacológico , NADPH Oxidases/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Reperfusão/métodos , Triazóis/uso terapêutico , Animais , Benzoxazóis/farmacologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Masculino , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Trombectomia/efeitos adversos , Trombectomia/métodos , Resultado do Tratamento , Triazóis/farmacologia
5.
Chin Med J (Engl) ; 124(19): 3080-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22040560

RESUMO

BACKGROUND: Cartilage injury has a very poor capacity for intrinsic regeneration. The cell-based treatment strategy for the cartilage repair using differentiated bone marrow mesenchymal stem cells (BMSCs) is, however, a promising approach to the chondral repair. This study was aimed to explore the chondrogenic potential of the goat BMSCs in the Transwell co-culture system and the poly-laetide-co-glycolide (PLGA) scaffolds. METHODS: The BMSCs were isolated from the goat iliac crest while the chondrocytes were obtained from the goat's last costal cartilage. In the Transwell co-culture system, the BMSCs co-cultured with chondrocytes were designed as group A, whereas the goat's BMSCs induced with the chondrogenic medium were group B. Both groups A and B were the experimental groups, while group C that only contained BMSCs was the control group. In the PLGA scaffolds co-culture system, BMSCs were seeded into the PLGA scaffolds, which were suspended in the 24-well plate, and the control group was established by presence or absence of chondrocytes at the bottom of the 24-well plate. Toluidine blue staining, Alcian blue staining, collagen II immunofluoresence, collagen II immunochemical staining, collagen I, collagen II, COL2a Q-PCR and osteopontin Q-PCR were used to examine the chondrogenic conditions as well as the expressions of chondrogenic and osteogenic genes. RESULTS: Cells isolated from the aspirates of the goat bone marrow proliferated rapidly and gained characteristics of stem cells in Passage 4. However, the differentiations of chondrocytes were not apparent in Passage 3. The results from Toluidine blue staining, collagen II immunofluoresence and PCR showed the transformation of BMSCs to chondrocytes in the Transwell co-culture system and PLGA scaffolds. Although the cartilage gene expressions were upgraded in both chondrogenesis group and co-culture system, the osteopontin gene expression, which represents osteogenic level, was also up-regulated. CONCLUSIONS: The Transwell co-culture system and the PLGA scaffolds co-culture system can promote the chondrogenic differentiation of the goat's BMSCs, while up-regulated osteopontin gene expression in the Transwell co-culture system implies the osteogenic potential of BMSCs.


Assuntos
Células da Medula Óssea/fisiologia , Condrócitos/fisiologia , Condrogênese/fisiologia , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual/métodos , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura , Cabras , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA