Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(10): eadl1122, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446892

RESUMO

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß cell autoimmunity and type 1 diabetes. We investigated how CVB affects human ß cells and anti-CVB T cell responses. ß cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with ß cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.


Assuntos
Infecções por Coxsackievirus , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Linfócitos T CD8-Positivos , Anticorpos , Epitopos , Peptídeos , Antivirais
2.
Oncotarget ; 7(12): 13416-28, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26967054

RESUMO

Uncontrolled Th17 cell activity is associated with cancer and autoimmune and inflammatory diseases. To validate the potential relevance of mouse models of targeting the Th17 pathway in human diseases we used RNA sequencing to compare the expression of coding and non-coding transcripts during the priming of Th17 cell differentiation in both human and mouse. In addition to already known targets, several transcripts not previously linked to Th17 cell polarization were found in both species. Moreover, a considerable number of human-specific long non-coding RNAs were identified that responded to cytokines stimulating Th17 cell differentiation. We integrated our transcriptomics data with known disease-associated polymorphisms and show that conserved regulation pinpoints genes that are relevant to Th17 cell-mediated human diseases and that can be modelled in mouse. Substantial differences observed in non-coding transcriptomes between the two species as well as increased overlap between Th17 cell-specific gene expression and disease-associated polymorphisms underline the need of parallel analysis of human and mouse models. Comprehensive analysis of genes regulated during Th17 cell priming and their classification to conserved and non-conserved between human and mouse facilitates translational research, pointing out which candidate targets identified in human are worth studying by using in vivo mouse models.


Assuntos
Biomarcadores/metabolismo , Polimorfismo de Nucleotídeo Único , Células Th17/imunologia , Células Th17/metabolismo , Transcriptoma , Animais , Células Cultivadas , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA
3.
PLoS One ; 8(7): e68415, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894303

RESUMO

A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach.


Assuntos
Células Dendríticas/efeitos dos fármacos , Engenharia , Perfilação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Nanopartículas , Titânio/farmacologia , Óxido de Zinco/farmacologia , Adulto , Biologia Computacional , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Células Jurkat , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Nanotecnologia , Titânio/química , Transcrição Gênica/efeitos dos fármacos , Óxido de Zinco/química
4.
Blood ; 119(23): e151-60, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22544700

RESUMO

Th17 cells play an essential role in the pathogenesis of autoimmune and inflammatory diseases. Most of our current understanding on Th17 cell differentiation relies on studies carried out in mice, whereas the molecular mechanisms controlling human Th17 cell differentiation are less well defined. In this study, we identified gene expression changes characterizing early stages of human Th17 cell differentiation through genome-wide gene expression profiling. CD4(+) cells isolated from umbilical cord blood were used to determine detailed kinetics of gene expression after initiation of Th17 differentiation with IL1ß, IL6, and TGFß. The differential expression of selected candidate genes was further validated at protein level and analyzed for specificity in initiation of Th17 compared with initiation of other Th subsets, namely Th1, Th2, and iTreg. This first genome-wide profiling of transcriptomics during the induction of human Th17 differentiation provides a starting point for defining gene regulatory networks and identifying new candidates regulating Th17 differentiation in humans.


Assuntos
Perfilação da Expressão Gênica , Células Th17/citologia , Células Th17/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Células Cultivadas , Sangue Fetal/citologia , Regulação da Expressão Gênica , Humanos , Interleucina-17/análise , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Células Th17/metabolismo , Fator de Crescimento Transformador beta/imunologia
5.
Proteomics ; 9(4): 1087-98, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19180534

RESUMO

Interleukin 4 (IL-4) has an indispensable role in the differentiation of naive T helper (Th) cells toward the Th2 phenotype and induction of B cells to produce the IgE class of Igs. By regulating these two cell types, IL-4 has a pre-eminent role in regulation of allergic inflammation. IL-4-mediated regulation of T and B cell functions is largely transmitted through signal transducer and activator of transcription 6 (Stat6). In this study, we have used metabolic labeling and 2-D electrophoresis to detect differences in the proteomes of IL-4 stimulated spleen mononuclear cells of Stat6-/- and wild type mice and MS/MS for protein identification. With this methodology, we identified 49 unique proteins from 21 protein spots to be differentially expressed. Interestingly, in Stat6-/- CD4(+) cells the expression of isoform 2 of core binding factor b (CBFb2) was enhanced. CBFb is a non-DNA binding cofactor for the Runx family of transcription factors, which have been implicated in regulation of Th cell differentiation. We also found cellular nucleic acid protein (CNBP) to be downregulated in Stat6-/- cells. None of the proteins identified in this study have previously been reported to be regulated via Stat6. The results highlight the importance of exploiting proteomics tools to complement the studies on Stat6 target genes identified through transcriptional profiling.


Assuntos
Regulação da Expressão Gênica/fisiologia , Interleucina-4/metabolismo , Linfócitos/metabolismo , Fator de Transcrição STAT6/metabolismo , Animais , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Eletroforese em Gel Bidimensional , Linfócitos/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microscopia de Fluorescência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT6/genética , Baço/citologia , Espectrometria de Massas em Tandem
6.
J Immunol ; 178(6): 3648-60, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17339462

RESUMO

Th cell subtypes, Th1 and Th2, are involved in the pathogenesis or progression of many immune-mediated diseases, such as type 1 diabetes and asthma, respectively. Defining the molecular networks and factors that direct Th1 and Th2 cell differentiation will help to understand the pathogenic mechanisms causing these diseases. Some of the key factors regulating this differentiation have been identified, however, they alone do not explain the process in detail. To identify novel factors directing the early differentiation, we have studied the transcriptomes of human Th1 and Th2 cells after 2, 6, and 48 h of polarization at the genome scale. Based on our current and previous studies, 288 genes or expressed sequence tags, representing approximately 1-1.5% of the human genome, are regulated in the process during the first 2 days. These transcriptional profiles revealed genes coding for components of certain pathways, such as RAS oncogene family and G protein-coupled receptor signaling, to be differentially regulated during the early Th1 and Th2 cell differentiation. Importantly, numerous novel genes with unknown functions were identified. By using short-hairpin RNA knockdown, we show that a subset of these genes is regulated by IL-4 through STAT6 signaling. Furthermore, we demonstrate that one of the IL-4 regulated genes, NDFIP2, promotes IFN-gamma production by the polarized human Th1 lymphocytes. Among the novel genes identified, there may be many factors that play a crucial role in the regulation of the differentiation process together with the previously known factors and are potential targets for developing therapeutics to modulate Th1 and Th2 responses.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Genoma Humano/fisiologia , Células Th1/fisiologia , Células Th2/fisiologia , Transcrição Gênica/fisiologia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Interleucina-4/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT6/imunologia , Transdução de Sinais/imunologia , Fatores de Tempo
7.
Clin Cancer Res ; 12(16): 4812-21, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16914566

RESUMO

PURPOSE: Increased production of Th2 cytokines characterizes Sezary syndrome, the leukemic form of cutaneous T-cell lymphomas (CTCL). To identify the molecular background and to study whether shared by the most common CTCL subtype, mycosis fungoides, we analyzed the gene expression profiles in both subtypes. EXPERIMENTAL DESIGN: Freshly isolated cells from 30 samples, representing skin, blood, and enriched CD4(+) cell populations of mycosis fungoides and Sezary syndrome, were analyzed with Affymetrix (Santa Clara, CA) oligonucleotide microarrays, quantitative PCR, or immunohistochemistry. The gene expression profiles were combined with findings of comparative genomic hybridization of the same samples to identify chromosomal changes affecting the aberrant gene expression. RESULTS: We identified a set of Th1-specific genes [e.g., TBX21 (T-bet), NKG7, and SCYA5 (RANTES)] to be down-regulated in Sezary syndrome as well as in a proportion of mycosis fungoides samples. In both Sezary syndrome and mycosis fungoides blood samples, the S100P and LIR9 gene expression was up-regulated. In lesional skin, IL7R and CD52 were up-regulated. Integration of comparative genomic hybridization and transcriptomic data identified chromosome arms 1q, 3p, 3q, 4q, 12q, 16p, and 16q as likely targets for new CTCL-associated gene aberrations. CONCLUSIONS: Our findings revealed several new genes involved in CTCL pathogenesis and potential therapeutic targets. Down-regulation of a set of genes involved in Th1 polarization, including the major Th1-polarizing factor, TBX21, was for the first time associated with CTCL. In addition, a plausible explanation for the proliferative response of CTCL cells to locally produced interleukin-7 was revealed.


Assuntos
Micose Fungoide/genética , Micose Fungoide/imunologia , Síndrome de Sézary/genética , Síndrome de Sézary/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Células Th1/fisiologia , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Regulação para Baixo , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase/métodos , Células Th1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA