Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Elife ; 122023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014932

RESUMO

Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction in acute coronary syndrome. Unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of EC dysfunction. We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterizations. AMI-derived endothelial cells (AMIECs) display impaired growth, migration, and tubulogenesis. Metabolically, AMIECs displayed augmented ROS and glutathione intracellular content, with a diminished glucose consumption coupled to high lactate production. In AMIECs, while PFKFB3 protein levels of were downregulated, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway, supported by upregulation of G6PD. Furthermore, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing an explanation for the increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggests a coupled mitochondrial activity. We suggest that high mitochondrial proton coupling underlies the high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Reprogramação Metabólica , Estresse Oxidativo , Glicólise , Glutationa/metabolismo , Fosfofrutoquinase-2/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L677-L693, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881560

RESUMO

Skeletal muscle dysfunction in chronic obstructive pulmonary disease (COPD) is characterized by a significant reduction in muscle strength and endurance. Preclinical studies show that stimulation of the soluble guanylate cyclase (sGC)-cGMP pathway attenuates muscle mass loss and prevents cigarette smoke-induced oxidative stress, indicating that pharmacological activation of the guanylyl cyclase pathway in COPD may provide a beneficial therapeutic strategy that reaches beyond the lung. In this study, conducted in an animal model of COPD, we first set out to assess the effect of cigarette smoke (CS) on biomarkers of muscle fatigue, such as protein degradation and its transcriptional regulation, in two types of muscles with different energy demands, i.e., the diaphragm and the gastrocnemius muscle of the limbs. Second, we evaluated the administration of an sGC stimulator on these markers to study the potential efficacy of such treatment in the recovery of skeletal muscle function. Exposure to CS led to weight loss, which was associated in the gastrocnemius with increased levels of proteolytic markers of muscle atrophy (MURF-1, Atrogin-1, proteasome C8 subunit 20 s, and total protein ubiquitination), whereas the size of fast-twitch muscle fibers decreased significantly. Long-term treatment with the sGC stimulator BAY 41-2272 resulted in a significant reduction in gastrocnemius levels of the aforementioned proteolytic markers, concomitant with a weight recovery and increased cGMP levels. Remarkably, levels of some of the analyzed biomarkers differed between respiratory and limb muscles. In conclusion, targeting sGC might exert beneficial effects on muscle alterations in patients with COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Cobaias , Animais , Guanilil Ciclase Solúvel/metabolismo , Guanilato Ciclase/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Músculo Esquelético/metabolismo , Transdução de Sinais , Biomarcadores/metabolismo , Atrofia/metabolismo , Atrofia/patologia
4.
Cells ; 10(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810533

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) is a form of pulmonary hypertension characterized by the presence of fibrotic intraluminal thrombi and causing obliteration of the pulmonary arteries. Although both endothelial cell (EC) dysfunction and inflammation are linked to CTEPH pathogenesis, regulation of the basal inflammatory response of ECs in CTEPH is not fully understood. Therefore, in the present study, we investigated the role of the nuclear factor (NF)-κB pro-inflammatory signaling pathway in ECs in CTEPH under basal conditions. Basal mRNA levels of interleukin (IL)-8, IL-1ß, monocyte chemoattractant protein-1 (MCP-1), C-C motif chemokine ligand 5 (CCL5), and vascular cell adhesion molecule-1 (VCAM-1) were upregulated in CTEPH-ECs compared to the control cells. To assess the involvement of NF-κB signaling in basal inflammatory activation, CTEPH-ECs were incubated with the NF-κB inhibitor Bay 11-7085. The increase in pro-inflammatory cytokines was abolished when cells were incubated with the NF-κB inhibitor. To determine if NF-κB was indeed activated, we stained pulmonary endarterectomy (PEA) specimens from CTEPH patients and ECs isolated from PEA specimens for phospho-NF-κB-P65 and found that especially the vessels within the thrombus and CTEPH-ECs are positive for phospho-NF-κB-P65. In summary, we show that CTEPH-ECs have a pro-inflammatory status under basal conditions, and blocking NF-κB signaling reduces the production of inflammatory factors in CTEPH-ECs. Therefore, our results show that the increased basal pro-inflammatory status of CTEPH-ECs is, at least partially, regulated through activation of NF-κB signaling and potentially contributes to the pathophysiology and progression of CTEPH.


Assuntos
Progressão da Doença , Células Endoteliais/patologia , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/patologia , Inflamação/patologia , Tromboembolia/complicações , Tromboembolia/patologia , Endarterectomia , Feminino , Fluorescência , Regulação da Expressão Gênica , Hemodinâmica , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Inflamação/genética , Inflamação/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fosforilação , Tromboembolia/genética , Tromboembolia/fisiopatologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo
5.
Int J Chron Obstruct Pulmon Dis ; 15: 2037-2047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904646

RESUMO

Introduction: In chronic obstructive pulmonary disease (COPD), endothelial dysfunction and stiffness of systemic arteries may contribute to increased cardiovascular risk. Pulmonary vascular disease (PVD) is frequent in COPD. The association between PVD and systemic vascular dysfunction has not been thoroughly evaluated in COPD. Methods: A total of 108 subjects were allocated into four groups (non-smoking controls, smoking controls, COPD without PVD and COPD with PVD). In systemic arteries, endothelial dysfunction was assessed by flow-mediated dilation (FMD) and arterial stiffness by pulse wave analysis (PWA) and pulse wave velocity (PWV). PVD was defined by a mean pulmonary artery pressure (PAP) ≥25 mmHg at right heart catheterization or by a tricuspid regurgitation velocity >2.8 m/s at doppler echocardiography. Biomarkers of inflammation and endothelial damage were assessed in peripheral blood. Results: FMD was lower in COPD patients, with or without PVD, compared to non-smoking controls; and in patients with COPD and PVD compared to smoking controls. PWV was higher in COPD with PVD patients compared to both non-smoking and smoking controls in a model adjusted by age and the Framingham score; PWV was also higher in patients with COPD and PVD compared to COPD without PVD patients in the non-adjusted analysis. FMD and PWV correlated significantly with forced expiratory volume in the first second (FEV1), diffusing capacity for carbon monoxide (DLCO) and systolic PAP. FMD and PWV were correlated in all subjects. Discussion: We conclude that endothelial dysfunction of systemic arteries is common in COPD, irrespective if they have PVD or not. COPD patients with PVD show increased stiffness and greater impairment of endothelial function in systemic arteries. These findings suggest the association of vascular impairment in both pulmonary and systemic territories in a subset of COPD patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Rigidez Vascular , Volume Expiratório Forçado , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Análise de Onda de Pulso , Testes de Função Respiratória
7.
Am J Physiol Lung Cell Mol Physiol ; 317(2): L222-L234, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166128

RESUMO

We have analyzed the effect of the soluble guanylate cyclase (sGC) stimulator BAY 41-2272 in a therapeutic intervention in guinea pigs chronically exposed to cigarette smoke (CS). The effects of sGC stimulation on respiratory function, pulmonary hemodynamics, airspace size, vessel remodeling, and inflammatory cell recruitment to the lungs were evaluated in animals that had been exposed to CS for 3 mo. CS exposure was continued for an additional 3 mo in half of the animals and withdrawn in the other half. Animals that stopped CS exposure had slightly lower pulmonary artery pressure (PAP) and right ventricle (RV) hypertrophy than those who continued CS exposure, but they did not recover from the emphysema and the inflammatory cell infiltrate. Conversely, oral BAY 41-2272 administration stopped progression or even reversed the CS-induced emphysema in both current and former smokers, respectively. Furthermore, BAY 41-2272 produced a reduction in the RV hypertrophy, which correlated with a decrease in the PAP values. By contrast, the degree of vessel remodeling induced by CS remained unchanged in the treated animals. Functional network analysis suggested perforin/granzyme pathway downregulation as an action mechanism capable of stopping the progression of emphysema after sGC stimulation. The pathway analysis also showed normalization of the expression of cGMP-dependent serine/kinases. In conclusion, in guinea pigs chronically exposed to CS, sGC stimulation exerts beneficial effects on the lung parenchyma and the pulmonary vasculature, suggesting that sGC stimulators might be a potential alternative for chronic obstructive pulmonary disease treatment that deserves further evaluation.


Assuntos
Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Enfisema Pulmonar/tratamento farmacológico , Fumaça , Guanilil Ciclase Solúvel/uso terapêutico , Animais , Guanilato Ciclase/metabolismo , Cobaias , Hipertensão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Nicotiana , Vasodilatadores/farmacologia
8.
Respir Res ; 20(1): 74, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992021

RESUMO

BACKGROUND: Pulmonary vascular abnormalities are a characteristic feature of chronic obstructive pulmonary disease (COPD). Cigarette smoking is the most important risk factor for COPD. It is believed that its constant exposure triggers endothelial cell damage and vascular remodelling. Under pathological conditions, progenitor cells (PCs) are mobilized from the bone marrow and recruited to sites of vascular injury. The aim of the study was to investigate whether in COPD the number of circulating PCs is related to the presence of bone marrow-derived cells in pulmonary arteries and the association of these phenomena to both systemic and pulmonary endothelial dysfunction. METHODS: Thirty-nine subjects, 25 with COPD, undergoing pulmonary resection because of a localized carcinoma, were included. The number of circulating PCs was assessed by flow cytometry using a triple combination of antibodies against CD45, CD133 and CD34. Infiltrating CD45+ cells were identified by immunohistochemistry in pulmonary arteries. Endothelial function in systemic and pulmonary arteries was measured by flow-mediated dilation and adenosine diphosphate-induced vasodilation, respectively. RESULTS: COPD patients had reduced numbers of circulating PCs (p < 0.05) and increased numbers of CD45+ cells (< 0.05) in the pulmonary arterial wall than non-COPD subjects, being both findings inversely correlated (r = - 0.35, p < 0.05). In pulmonary arteries, the number of CD45+ cells correlated with the severity of vascular remodelling (r = 0.4, p = 0.01) and the endothelium-dependent vasodilation (r = - 0.3, p = 0.05). Systemic endothelial function was unrelated to the number of circulating PCs and changes in pulmonary vessels. CONCLUSION: In COPD, the decrease of circulating PCs is associated with their recruitment in pulmonary arteries, which in turn is associated with endothelial dysfunction and vessel remodelling, suggesting a mechanistic link between these phenomena. Our findings are consistent with the notion of an imbalance between endothelial damage and repair capacity in the pathogenesis of pulmonary vascular abnormalities in COPD.


Assuntos
Movimento Celular/fisiologia , Endotélio Vascular/metabolismo , Artéria Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/sangue , Células-Tronco/metabolismo , Idoso , Endotélio Vascular/patologia , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Células-Tronco/patologia
9.
Am J Respir Cell Mol Biol ; 59(4): 490-499, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29757677

RESUMO

Pulmonary vascular remodeling is an angiogenic-related process involving changes in smooth muscle cell (SMC) homeostasis, which is frequently observed in chronic obstructive pulmonary disease (COPD). MicroRNAs (miRNAs) are small, noncoding RNAs that regulate mRNA expression levels of many genes, leading to the manifestation of cell identity and specific cellular phenotypes. Here, we evaluate the miRNA expression profiles of pulmonary arteries (PAs) of patients with COPD and its relationship with the regulation of SMC phenotypic change. miRNA expression profiles from PAs of 12 patients with COPD, 9 smokers with normal lung function (SK), and 7 nonsmokers (NS) were analyzed using TaqMan Low-Density Arrays. In patients with COPD, expression levels of miR-98, miR-139-5p, miR-146b-5p, and miR-451 were upregulated, as compared with NS. In contrast, miR-197, miR-204, miR-485-3p, and miR-627 were downregulated. miRNA-197 expression correlated with both airflow obstruction and PA intimal enlargement. In an in vitro model of SMC differentiation, miR-197 expression was associated with an SMC contractile phenotype. miR-197 inhibition blocked the acquisition of contractile markers in SMCs and promoted a proliferative/migratory phenotype measured by both cell cycle analysis and wound-healing assay. Using luciferase assays, Western blot, and quantitative PCR, we confirmed that miR-197 targets the transcription factor E2F1. In PAs from patients with COPD, levels of E2F1 were increased as compared with NS. In PAs of patients with COPD, remodeling of the vessel wall is associated with downregulation of miR-197, which regulates SMC phenotype. The effect of miR-197 on PAs might be mediated, at least in part, by the key proproliferative factor, E2F1.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Remodelação Vascular/genética , Idoso , Diferenciação Celular/genética , Proliferação de Células/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Volume Expiratório Forçado , Redes Reguladoras de Genes , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Índice de Gravidade de Doença
10.
PLoS One ; 13(4): e0195724, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672621

RESUMO

BACKGROUND: Circulating endothelial microparticles (EMPs) and progenitor cells (PCs) are biological markers of endothelial function and endogenous repair capacity. The study was aimed to investigate whether COPD patients have an imbalance between EMPs to PCs compared to controls and to evaluate the effect of cigarette smoke on these circulating markers. METHODS: Circulating EMPs and PCs were determined by flow cytometry in 27 nonsmokers, 20 smokers and 61 COPD patients with moderate to severe airflow obstruction. We compared total EMPs (CD31+CD42b-), apoptotic if they co-expressed Annexin-V+ or activated if they co-expressed CD62E+, circulating PCs (CD34+CD133+CD45+) and the EMPs/PCs ratio between groups. RESULTS: COPD patients presented increased levels of total and apoptotic circulating EMPs, and an increased EMPs/PCs ratio, compared with nonsmokers. Women had less circulating PCs than men through all groups and those with COPD showed lower levels of PCs than both control groups. In smokers, circulating EMPs and PCs did not differ from nonsmokers, being the EMPs/PCs ratio in an intermediate position between COPD and nonsmokers. CONCLUSIONS: We conclude that COPD patients present an imbalance between endothelial damage and repair capacity that might explain the frequent concurrence of cardiovascular disorders. Factors related to the disease itself and gender, rather than cigarette smoking, may account for this imbalance.


Assuntos
Micropartículas Derivadas de Células/patologia , Endotélio Vascular/patologia , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Apoptose , Estudos de Casos e Controles , Micropartículas Derivadas de Células/fisiologia , Células Progenitoras Endoteliais/patologia , Células Progenitoras Endoteliais/fisiologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Regeneração/fisiologia , Testes de Função Respiratória , Fumar/sangue , Fumar/patologia , Fumar/fisiopatologia
11.
PLoS One ; 13(1): e0190628, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304131

RESUMO

OBJECTIVE: Soluble guanylate cyclase (sGC) is a key enzyme of the nitric oxide-cyclic guanosine 3',5'-monophosphate (NO-cGMP) signaling pathway, and its pharmacological stimulation has been shown to prevent the development of emphysema and pulmonary vascular remodeling in animal models of chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the effects of sGC stimulation on oxidative stress in the plasma of guinea pigs chronically exposed to cigarette smoke (CS). METHODS AND RESULTS: Guinea pigs were exposed to CS or sham for three months, and received either the sGC stimulator BAY 41-2272 or vehicle. Body weight was measured weekly; and markers of oxidative stress in plasma, and airspace size and inflammatory cell infiltrate in lung tissue were analyzed at the end of the study. Compared to sham-exposed guinea pigs, CS-exposed animals gained less body weight and showed higher plasma levels of nitrated tyrosine residues (3-NT), 4-hydroxynonenal (4-HNE), and 8-hydroxydeoxyguanosine (8-OHdG). Treatment with the sGC stimulator led to a body weight gain in the CS-exposed guinea pigs similar to non-exposed and attenuated the increase in 3-NT and 4-HNE. Plasma levels of 3-NT correlated with the severity of inflammatory cell infiltrate in the lung. CONCLUSION: Stimulation of sGC prevents oxidative stress induced by CS exposure and is associated with an attenuated inflammatory response in the lung.


Assuntos
Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Biomarcadores/sangue , Fumar Cigarros , Ativação Enzimática , Cobaias , Pulmão/enzimologia , Pulmão/metabolismo , Masculino , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/enzimologia , Fumaça
12.
Respir Res ; 18(1): 50, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28330488

RESUMO

BACKGROUND: Cigarette smoke (CS) is associated with lower numbers of circulating stem cells and might severely affect their mobilization, trafficking and homing. Our study was designed to demonstrate in an animal model of CS exposure whether CS affects the homing and functional capabilities of bone marrow-derived mesenchymal stem cells (BM-MSCs). METHODS: Guinea pigs (GP), exposed or sham-exposed to CS, were administered via tracheal instillation or by vascular administration with 2.5 × 106 BM-MSCs obtained from CS-exposed or sham-exposed animal donors. Twenty-four hours after cell administration, animals were sacrificed and cells were visualised into lung structures by optical microscopy. BM-MSCs from 8 healthy GP and from 8 GP exposed to CS for 1 month were isolated from the femur, cultured in vitro and assessed for their proliferation, migration, senescence, differentiation potential and chemokine gene expression profile. RESULTS: CS-exposed animals showed greater BM-MSCs lung infiltration than sham-exposed animals regardless of route of administration. The majority of BM-MSCs localized in the alveolar septa. BM-MSCs obtained from CS-exposed animals showed lower ability to engraft and lower proliferation and migration. In vitro, BM-MSCs exposed to CS extract showed a significant reduction of proliferative, cellular differentiation and migratory potential and an increase in cellular senescence in a dose dependent manner. CONCLUSION: Short-term CS exposure induces BM-MSCs dysfunction. Such dysfunction was observed in vivo, affecting the cell homing and proliferation capabilities of BM-MSCs in lungs exposed to CS and in vitro altering the rate of proliferation, senescence, differentiation and migration capacity. Additionally, CS induced a reduction in CXCL9 gene expression in the BM from CS-exposed animals underpinning a potential mechanistic action of bone marrow dysfunction.


Assuntos
Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Fumar Cigarros/efeitos adversos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/patologia , Fumaça/efeitos adversos , Animais , Células da Medula Óssea/efeitos dos fármacos , Movimento Celular/imunologia , Cobaias , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Modelos Animais
13.
PLoS One ; 11(7): e0159460, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441378

RESUMO

OBJECTIVE: Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling. METHODS AND RESULTS: Slug expression was decreased during both cell-to-cell contact and TGFß1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFß1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries. CONCLUSIONS: Slug emerges as a key transcription factor driving SMC towards a proliferative phenotype. The increased Slug expression observed in vivo in highly remodeled arteries of mice and human suggests a role of Slug in the pathogenesis of pulmonary vascular diseases.


Assuntos
Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Remodelação Vascular , Animais , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenótipo , Artéria Pulmonar/patologia , Fatores de Transcrição da Família Snail/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética
14.
Eur Respir J ; 46(2): 346-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25929951

RESUMO

Sildenafil, a phosphodiesterase-5 inhibitor used to treat pulmonary hypertension, may have effects on pulmonary vessel structure and function. We evaluated the effects of sildenafil in a cigarette smoke (CS)-exposed model of chronic obstructive pulmonary disease (COPD).42 guinea-pigs were exposed to cigarette smoke or sham-exposed and treated with sildenafil or vehicle for 12 weeks, divided into four groups. Assessments included respiratory resistance, pulmonary artery pressure (PAP), right ventricle (RV) hypertrophy, endothelial function of the pulmonary artery and lung vessel and parenchymal morphometry.CS-exposed animals showed increased PAP, RV hypertrophy, raised respiratory resistance, airspace enlargement and intrapulmonary vessel remodelling. CS exposure also produced wall thickening, increased contractility and endothelial dysfunction in the main pulmonary artery. CS-exposed animals treated with sildenafil showed lower PAP and a trend to less RV hypertrophy than CS-exposed only animals. Furthermore, sildenafil preserved the intrapulmonary vessel density and attenuated the airspace enlargement induced by CS. No differences in gas exchange, respiratory resistance, endothelial function and vessel remodelling were observed.We conclude that in this experimental model of COPD, sildenafil prevents the development of pulmonary hypertension and contributes to preserve the parenchymal and vascular integrity, reinforcing the notion that the nitric oxide-cyclic guanosine monophosphate axis is perturbed by CS exposure.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Citrato de Sildenafila/farmacologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Modelos Animais de Doenças , Cobaias , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Artéria Pulmonar/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/etiologia
15.
PLoS One ; 9(8): e106163, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25171153

RESUMO

BACKGROUND: In chronic obstructive pulmonary disease (COPD), decreased progenitor cells and impairment of systemic vascular function have been suggested to confer higher cardiovascular risk. The origin of these changes and their relationship with alterations in the pulmonary circulation are unknown. OBJECTIVES: To investigate whether changes in the number of circulating hematopoietic progenitor cells are associated with pulmonary hypertension or changes in endothelial function. METHODS: 62 COPD patients and 35 controls (18 non-smokers and 17 smokers) without cardiovascular risk factors other than cigarette smoking were studied. The number of circulating progenitors was measured as CD45(+)CD34(+)CD133(+) labeled cells by flow cytometry. Endothelial function was assessed by flow-mediated dilation. Markers of inflammation and angiogenesis were also measured in all subjects. RESULTS: Compared with controls, the number of circulating progenitor cells was reduced in COPD patients. Progenitor cells did not differ between control smokers and non-smokers. COPD patients with pulmonary hypertension showed greater number of progenitor cells than those without pulmonary hypertension. Systemic endothelial function was worse in both control smokers and COPD patients. Interleukin-6, fibrinogen, high sensitivity C-reactive protein, vascular endothelial growth factor and tumor necrosis factor were increased in COPD. In COPD patients, the number of circulating progenitor cells was inversely related to the flow-mediated dilation of systemic arteries. CONCLUSIONS: Pulmonary and systemic vascular impairment in COPD is associated with cigarette smoking but not with the reduced number of circulating hematopoietic progenitors. The latter appears to be a consequence of the disease itself not related to smoking habit.


Assuntos
Endotélio Vascular/fisiopatologia , Células-Tronco Hematopoéticas/patologia , Hipertensão Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Antígeno AC133 , Idoso , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Endotélio Vascular/metabolismo , Feminino , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Antígenos Comuns de Leucócito/metabolismo , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Peptídeos/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar
16.
Am J Respir Crit Care Med ; 189(11): 1359-73, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24738736

RESUMO

RATIONALE: Chronic obstructive pulmonary disease (COPD) is a major cause of death worldwide. No therapy stopping progress of the disease is available. OBJECTIVES: To investigate the role of the soluble guanylate cyclase (sGC)-cGMP axis in development of lung emphysema and pulmonary hypertension (PH) and to test whether the sGC-cGMP axis is a treatment target for these conditions. METHODS: Investigations were performed in human lung tissue from patients with COPD, healthy donors, mice, and guinea pigs. Mice were exposed to cigarette smoke (CS) for 6 hours per day, 5 days per week for up to 6 months and treated with BAY 63-2521. Guinea pigs were exposed to CS from six cigarettes per day for 3 months, 5 days per week and treated with BAY 41-2272. Both BAY compounds are sGC stimulators. Gene and protein expression analysis were performed by quantitative real-time polymerase chain reaction and Western blotting. Lung compliance, hemodynamics, right ventricular heart mass alterations, and alveolar and vascular morphometry were performed, as well as inflammatory cell infiltrate assessment. In vitro assays of cell adhesion, proliferation, and apoptosis have been done. MEASUREMENTS AND MAIN RESULTS: The functionally essential sGC ß1-subunit was down-regulated in patients with COPD and in CS-exposed mice. sGC stimulators prevented the development of PH and emphysema in the two different CS-exposed animal models. sGC stimulation prevented peroxynitrite-induced apoptosis of alveolar and endothelial cells, reduced CS-induced inflammatory cell infiltrate in lung parenchyma, and inhibited adhesion of CS-stimulated neutrophils. CONCLUSIONS: The sGC-cGMP axis is perturbed by chronic exposure to CS. Treatment of COPD animal models with sGC stimulators can prevent CS-induced PH and emphysema.


Assuntos
Enfisema/prevenção & controle , Guanilato Ciclase/metabolismo , Hipertensão Pulmonar/prevenção & controle , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Receptores Citoplasmáticos e Nucleares/metabolismo , Fumar/efeitos adversos , Animais , Biomarcadores/metabolismo , Western Blotting , Modelos Animais de Doenças , Regulação para Baixo , Enfisema/enzimologia , Cobaias , Humanos , Hipertensão Pulmonar/enzimologia , Técnicas In Vitro , Camundongos , Doença Pulmonar Obstrutiva Crônica/enzimologia , Reação em Cadeia da Polimerase em Tempo Real , Fumar/metabolismo , Guanilil Ciclase Solúvel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA