Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 187: 109810, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468069

RESUMO

Irradiation of the vertebrae in prepubertal patients, if non-homogenous, can result in future growth deformities including kyphoscoliosis. Vertebral delineation and dosimetry were assessed for 101 paediatric cases reviewed within QUARTET-affiliated trials. Despite the availability of published consensus guidelines, a high variability in vertebral delineation was observed, with impact on dosimetry.


Assuntos
Radioterapia (Especialidade) , Coluna Vertebral , Criança , Humanos , Previsões , Ensaios Clínicos como Assunto
2.
Phys Imaging Radiat Oncol ; 27: 100454, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37333894

RESUMO

Background and purpose: Normal tissue sparing in radiotherapy relies on proper delineation. While manual contouring is time consuming and subject to inter-observer variability, auto-contouring could optimize workflows and harmonize practice. We assessed the accuracy of a commercial, deep-learning, MRI-based tool for brain organs-at-risk delineation. Materials and methods: Thirty adult brain tumor patients were retrospectively manually recontoured. Two additional structure sets were obtained: AI (artificial intelligence) and AIedit (manually corrected auto-contours). For 15 selected cases, identical plans were optimized for each structure set. We used Dice Similarity Coefficient (DSC) and mean surface-distance (MSD) for geometric comparison and gamma analysis and dose-volume-histogram comparison for dose metrics evaluation. Wilcoxon signed-ranks test was used for paired data, Spearman coefficient(ρ) for correlations and Bland-Altman plots to assess level of agreement. Results: Auto-contouring was significantly faster than manual (1.1/20 min, p < 0.01). Median DSC and MSD were 0.7/0.9 mm for AI and 0.8/0.5 mm for AIedit. DSC was significantly correlated with structure size (ρ = 0.76, p < 0.01), with higher DSC for large structures. Median gamma pass rate was 74% (71-81%) for Plan_AI and 82% (75-86%) for Plan_AIedit, with no correlation with DSC or MSD. Differences between Dmean_AI and Dmean_Ref were ≤ 0.2 Gy (p < 0.05). The dose difference was moderately correlated with DSC. Bland Altman plot showed minimal discrepancy (0.1/0) between AI and reference Dmean/Dmax. Conclusions: The AI-model showed good accuracy for large structures, but developments are required for smaller ones. Auto-segmentation was significantly faster, with minor differences in dose distribution caused by geometric variations.

3.
Radiother Oncol ; 182: 109549, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828140

RESUMO

BACKGROUND AND PURPOSE: SIOP Europe's QUARTET project launched in 2016; aiming to improve access to high-quality radiotherapy for children and adolescents treated within clinical trials across Europe. The aim of this report is to present the profile of institutions participating in six QUARTET-affiliated trials and a description of the initial individual case review (ICR) outcomes. METHODS: This is a two-part analysis. Firstly, using facility questionnaires, beam output audit certificates, and advanced technique credentialing records to create a profile of approved institutions, and secondly, collating trial records for ICRs submitted prior to 31/10/2022. Trials included are: SIOPEN HR-NBL1, SIOPEN-LINES, SIOPEN- VERITAS, SIOP-BTG HRMB, EpSSG-FaR-RMS, and SIOPEN HR-NBL2. RESULTS: By 31/10/2022, a total of 103 institutions had commenced QUARTET site approval procedures to participate in QUARTET-affiliated trials; 66 sites across 20 countries were approved. These participating institutions were often paediatric referral sites with intensity modulated radiotherapy or proton beam therapy, designated paediatric radiation oncologists, and paediatric adapted facilities and imaging protocols available. In total, 263 patient plans were submitted for ICR, 254 ICRs from 15 countries were completed. ICRs had a rejection rate of 39.8%, taking an average of 1.4 submissions until approval was achieved. Target delineation was the most frequent reason for rejection. CONCLUSION: The QUARTET facility questionnaire is a valuable tool for mapping resources, personnel, and technology available to children and adolescents receiving radiotherapy. Prospective ICR is essential for paediatric oncology clinical trials and should be prioritised to reduce protocol violations.


Assuntos
Radioterapia (Especialidade) , Radioterapia de Intensidade Modulada , Adolescente , Criança , Humanos , Estudos Prospectivos , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador
4.
Clin Transl Radiat Oncol ; 38: 96-103, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36407491

RESUMO

Tomotherapy is a method of delivering rotational IMRT offering various advantages, notably for complex and large targets such as the cranio-spinal axis. This systematic literature review reports on main clinical outcomes and toxicities in patients with various cancer types that received whole craniospinal axis irradiation (CSI) using Tomotherapy and offers a comprehensive comparison between Tomotherapy and other radiotherapy delivery techniques. Databases including PubMed, PubMed Central, Embase, and Cochrane were searched using the keywords "tomotherapy" AND "craniospinal". Fifty-six papers were included in the review. Patient population was adult in 9 papers, paediatric in 26 papers and mixed in 14 papers. Patients treated with helical Tomotherapy had similar disease-specific clinical outcomes and toxicities as patients treated using other techniques. Compared to any other technique, Tomotherapy provides better target coverage, homogeneity, and conformity in 23, 34 and 22 reports. Tomotherapy showed better organ-at-risk sparing for the thyroid, parotids, cochlea, eyes, heart and esophagus. Beam-On-Time (BOT) was reported to be longer for Tomotherapy in most studies (Median BOT: HT = 11 min, VMAT = 5.49 min, 3DCRT = 1.46 min). In conclusion, Tomotherapy offers good cranio-spinal axis coverage with improved homogeneity and conformity compared to other techniques, but with a considerably longer treatment time. Clinical outcome and toxicities suggest using Tomotherapy for CSI is efficient and safe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA