Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131726

RESUMO

Background: In people living with HIV (PLWH) on combination antiretroviral therapy (cART), persistent systemic inflammation is a driving force for the progression of comorbidities, such as cardiovascular and cerebrovascular diseases. In this context, monocyte- and macrophage-related inflammation rather than T cell activation is a major cause of chronic inflammation. However, the underlying mechanism of how monocytes cause persistent systemic inflammation in PLWH is elusive. Methods and Results: In vitro, we demonstrated that lipopolysaccharides (LPS) or tumor necrosis factor alpha (TNFα), induced a robust increase of Delta-like ligand 4 (Dll4) mRNA and protein expression in human monocytes and Dll4 secretion (extracellular Dll4, exDll4) from monocytes. Enhanced membrane-bound Dll4 (mDll4) expression in monocytes triggered Notch1 activation to promote pro-inflammatory factors expression. Dll4 silencing and inhibition of Nocth1 activation diminished the LPS or TNFα -induced inflammation. exDll4 releases in response to cytokines occurred in monocytes but not endothelial cells or T cells. In clinical specimens, we found that PLWH, both male and female, on cART, showed a significant increase in mDll4 expression, activation of Dll4-Notch1 signaling, and inflammatory markers in monocytes. Although there was no sex effect on mDII4 in PLWH, plasma exDll4 was significantly elevated in males but not females compared to HIV uninfected individuals. Furthermore, exDll4 plasma levels paralleled with monocytes mDll4 in male PLWH. Circulating exDll4 was also positively associated with pro-inflammatory monocytes phenotype and negatively associated with classic monocytes phenotype in male PLWH. Conclusion: Pro-inflammatory stimuli increase Dll4 expression and Dll4-Notch1 signaling activation in monocytes and enhance monocyte proinflammatory phenotype, contributing to persistent systemic inflammation in male and female PLWH. Therefore, monocyte mDll4 could be a potential biomarker and therapeutic target of systemic inflammation. Plasma exDll4 may also play an additional role in systemic inflammation but primarily in men.

2.
J Am Heart Assoc ; 9(17): e015998, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819189

RESUMO

Background Microvesicles are cell membrane-derived vesicles that have been shown to augment inflammation. Specifically, monocyte-derived microvesicles (MDMVs), which can express the coagulation protein tissue factor, contribute to thrombus formation and cardiovascular disease. People living with HIV experience higher prevalence of cardiovascular disease and also exhibit increased levels of plasma microvesicles. The process of microvesicle release has striking similarity to budding of enveloped viruses. The surface protein tetherin inhibits viral budding by physically tethering budding virus particles to cells. Hence, we investigated the role of tetherin in regulating the release of MDMVs during HIV infection. Methods and Results The plasma of aviremic HIV-infected individuals had increased levels of tissue factor + MDMVs, as measured by flow cytometry, and correlated to reduced tetherin expression on monocytes. Superresolution confocal and electron microscopy showed that tetherin localized at the site of budding MDMVs. Mechanistic studies revealed that the exposure of monocytes to HIV-encoded Tat triggered tetherin loss and subsequent rise in MDMV production. Overexpression of tetherin in monocytes led to morphologic changes in the pseudopodia directly underneath the MDMVs. Further, tetherin knockout mice demonstrated a higher number of circulating MDMVs and less time to bleeding cessation. Conclusions Our studies define a novel regulatory mechanism of MDMV release through tetherin and explore its contribution to the procoagulatory state that is frequently observed in people with HIV. Such insights could lead to improved therapies for individuals infected with HIV and also for those with cardiovascular disease.


Assuntos
Antivirais/metabolismo , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Micropartículas Derivadas de Células/genética , Infecções por HIV/metabolismo , Adulto , Animais , Fatores de Coagulação Sanguínea/metabolismo , Antígeno 2 do Estroma da Médula Óssea/farmacologia , Antígeno 2 do Estroma da Médula Óssea/ultraestrutura , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/patologia , Micropartículas Derivadas de Células/virologia , Feminino , HIV/efeitos dos fármacos , Infecções por HIV/sangue , Infecções por HIV/complicações , Infecções por HIV/virologia , Humanos , Imuno-Histoquímica/métodos , Inflamação/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Monócitos/metabolismo , Prevalência , Proteínas Virais Reguladoras e Acessórias/metabolismo
3.
Nat Commun ; 11(1): 3479, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661250

RESUMO

Genetic factors contribute to the risk of thrombotic diseases. Recent genome wide association studies have identified genetic loci including SLC44A2 which may regulate thrombosis. Here we show that Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial energetics. We find that Slc44a2 null mice (Slc44a2(KO)) have increased bleeding times and delayed thrombosis compared to wild-type (Slc44a2(WT)) controls. Platelets from Slc44a2(KO) mice have impaired activation in response to thrombin. We discover that Slc44a2 mediates choline transport into mitochondria, where choline metabolism leads to an increase in mitochondrial oxygen consumption and ATP production. Platelets lacking Slc44a2 contain less ATP at rest, release less ATP when activated, and have an activation defect that can be rescued by exogenous ADP. Taken together, our data suggest that mitochondria require choline for maximum function, demonstrate the importance of mitochondrial metabolism to platelet activation, and reveal a mechanism by which Slc44a2 influences thrombosis.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Ativação Plaquetária/fisiologia , Trombose/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Masculino , Espectrometria de Massas , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Ativação Plaquetária/genética , Agregação Plaquetária/genética , Agregação Plaquetária/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Trombose/genética
4.
Aging (Albany NY) ; 11(24): 11955-11974, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852838

RESUMO

Platelets have central roles in both immune responses and development. Stimulated platelets express leukocyte adhesion molecules and release numerous immune modulatory factors that recruit and activate leukocytes, both at the sites of activation and distantly. Monocytes are innate immune cells with dynamic immune modulatory functions that change during the aging process, a phenomenon termed "inflammaging". We have previously shown that platelets are a major source of plasma beta-2 microglobulin (ß2M) and that ß2M induced a monocyte pro-inflammatory phenotype. Plasma ß2M increases with age and is a pro-aging factor. We hypothesized that platelet derived ß2M regulates monocyte phenotypes in the context of aging. Using wild-type (WT) and platelet specific ß2M knockout mice (Plt-ß2M-/-) mice, we found that plasma ß2M increased with age and correlated with increased circulating Ly6CHi monocytes. However, aged Plt-ß2M-/- mice had significantly fewer Ly6CHi monocytes compared to WT mice. Quantitative real-time PCR of circulating monocytes showed that WT mouse monocytes were more "pro-inflammatory" with age, while Plt-ß2M-/- derived monocytes adopted a "pro-reparative" phenotype. Older Plt-ß2M-/- mice had a significant decline in heart function compared to age matched WT mice, as well as increased cardiac fibrosis and pro-fibrotic markers. These data suggest that platelet-derived ß2M regulates age associated monocyte polarization, and a loss of platelet derived ß2M shifted monocytes and macrophages to a pro-reparative phenotype and increased pro-fibrotic cardiac responses. Platelet regulation of monocyte phenotypes via ß2M may maintain a balance between inflammatory and reparative signals that affects age related physiologic outcomes.


Assuntos
Envelhecimento/imunologia , Envelhecimento/metabolismo , Plaquetas/metabolismo , Macrófagos/metabolismo , Microglobulina beta-2/metabolismo , Envelhecimento/patologia , Animais , Plaquetas/imunologia , Fibrose/imunologia , Fibrose/patologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Miocárdio/patologia , Fenótipo
5.
Arterioscler Thromb Vasc Biol ; 38(7): 1594-1606, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724818

RESUMO

OBJECTIVE: Reduced blood flow and tissue oxygen tension conditions result from thrombotic and vascular diseases such as myocardial infarction, stroke, and peripheral vascular disease. It is largely assumed that while platelet activation is increased by an acute vascular event, chronic vascular inflammation, and ischemia, the platelet activation pathways and responses are not themselves changed by the disease process. We, therefore, sought to determine whether the platelet phenotype is altered by hypoxic and ischemic conditions. APPROACH AND RESULTS: In a cohort of patients with metabolic and peripheral artery disease, platelet activity was enhanced, and inhibition with oral antiplatelet agents was impaired compared with platelets from control subjects, suggesting a difference in platelet phenotype caused by the disease. Isolated murine and human platelets exposed to reduced oxygen (hypoxia chamber, 5% O2) had increased expression of some proteins that augment platelet activation compared with platelets in normoxic conditions (21% O2). Using a murine model of critical limb ischemia, platelet activity was increased even 2 weeks postsurgery compared with sham surgery mice. This effect was partly inhibited in platelet-specific ERK5 (extracellular regulated protein kinase 5) knockout mice. CONCLUSIONS: These findings suggest that ischemic disease changes the platelet phenotype and alters platelet agonist responses because of changes in the expression of signal transduction pathway proteins. Platelet phenotype and function should, therefore, be better characterized in ischemic and hypoxic diseases to understand the benefits and limitations of antiplatelet therapy.


Assuntos
Plaquetas/metabolismo , Hipóxia/sangue , Isquemia/sangue , Oxigênio/sangue , Doença Arterial Periférica/sangue , Ativação Plaquetária , Animais , Plaquetas/efeitos dos fármacos , Estudos de Casos e Controles , Estado Terminal , Modelos Animais de Doenças , Humanos , Hipóxia/fisiopatologia , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 7 Ativada por Mitógeno/sangue , Proteína Quinase 7 Ativada por Mitógeno/genética , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/fisiopatologia , Fenótipo , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Pneumonectomia , Transdução de Sinais
6.
Immunol Res ; 65(5): 1089-1094, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28914425

RESUMO

Platelet factor 4 (PF4) is a megakaryocyte-/platelet-derived chemokine with diverse functions as a regulator of vascular and immune biology. PF4 has a central role in vessel injury responses, innate immune cell responses, and T-helper cell differentiation. We have now discovered that PF4 has a direct role in B cell differentiation in the bone marrow. Mice lacking PF4 (PF4-/- mice) had fewer developing B cells in the bone marrow beginning after the pre-pro-B cell stage of differentiation. In vitro, PF4 increased the differentiation of hematopoietic progenitors to B cell lineage cells, indicating that PF4 has a direct effect on B cell differentiation. STAT5 activation is essential in early B cell development and PF4 increased the phosphorylation of STAT5. Taken together, these data demonstrate that PF4 has an important role in increasing B cell differentiation in the bone marrow environment.


Assuntos
Linfócitos B/imunologia , Linfócitos B/fisiologia , Células da Medula Óssea/fisiologia , Fator Plaquetário 4/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT5/metabolismo
7.
Immunol Res ; 65(4): 828-840, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28378118

RESUMO

MicroRNAs (miRNAs) are major regulators of cell responses, particularly in stressed cell states and host immune responses. Some miRNAs have a role in pathogen defense, including regulation of immune responses to Plasmodium parasite infection. Using a nonlethal mouse model of blood stage malaria infection, we have found that miR-451-/- mice infected with Plasmodium yoelii XNL cleared infection at a faster rate than did wild-type (WT) mice. MiR-451-/- mice had an increased leukocyte response to infection, with the protective phenotype primarily driven by CD4+ T cells. WT and miR-451-/- CD4+ T cells had similar activation responses, but miR-451-/- CD4+ cells had significantly increased proliferation, both in vitro and in vivo. Myc is a miR-451 target with a central role in cell cycle progression and cell proliferation. CD4+ T cells from miR-451-/- mice had increased postactivation Myc expression. RNA-Seq analysis of CD4+ cells demonstrated over 5000 differentially expressed genes in miR-451-/- mice postinfection, many of which are directly or indirectly Myc regulated. This study demonstrates that miR-451 regulates T cell proliferative responses in part via a Myc-dependent mechanism.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Malária/imunologia , MicroRNAs/genética , Plasmodium yoelii/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Células Cultivadas , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima
8.
PLoS One ; 11(6): e0157115, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27270236

RESUMO

Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Minociclina/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
9.
J Clin Invest ; 124(2): 543-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24463452

RESUMO

Th cells are the major effector cells in transplant rejection and can be divided into Th1, Th2, Th17, and Treg subsets. Th differentiation is controlled by transcription factor expression, which is driven by positive and negative cytokine and chemokine stimuli at the time of T cell activation. Here we discovered that chemokine platelet factor 4 (PF4) is a negative regulator of Th17 differentiation. PF4-deficient and platelet-deficient mice had exaggerated immune responses to cardiac transplantation, including increased numbers of infiltrating Th17 cells and increased plasma IL-17. Although PF4 has been described as a platelet-specific molecule, we found that activated T cells also express PF4. Furthermore, bone marrow transplantation experiments revealed that T cell-derived PF4 contributes to a restriction in Th17 differentiation. Taken together, the results of this study demonstrate that PF4 is a key regulator of Th cell development that is necessary to limit Th17 differentiation. These data likely will impact our understanding of platelet-dependent regulation of T cell development, which is important in many diseases, in addition to transplantation.


Assuntos
Rejeição de Enxerto/metabolismo , Transplante de Coração , Fator Plaquetário 4/metabolismo , Células Th17/citologia , Animais , Plaquetas/citologia , Células da Medula Óssea/citologia , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Ensaio de Imunoadsorção Enzimática , Homeostase , Humanos , Interleucina-17/sangue , Células Jurkat , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA