Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 33(9): 1793-1807.e9, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34358431

RESUMO

Exercise is a powerful driver of physiological angiogenesis during adulthood, but the mechanisms of exercise-induced vascular expansion are poorly understood. We explored endothelial heterogeneity in skeletal muscle and identified two capillary muscle endothelial cell (mEC) populations that are characterized by differential expression of ATF3/4. Spatial mapping showed that ATF3/4+ mECs are enriched in red oxidative muscle areas while ATF3/4low ECs lie adjacent to white glycolytic fibers. In vitro and in vivo experiments revealed that red ATF3/4+ mECs are more angiogenic when compared with white ATF3/4low mECs. Mechanistically, ATF3/4 in mECs control genes involved in amino acid uptake and metabolism and metabolically prime red (ATF3/4+) mECs for angiogenesis. As a consequence, supplementation of non-essential amino acids and overexpression of ATF4 increased proliferation of white mECs. Finally, deleting Atf4 in ECs impaired exercise-induced angiogenesis. Our findings illustrate that spatial metabolic angiodiversity determines the angiogenic potential of muscle ECs.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Adulto , Células Endoteliais/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Patológica/metabolismo
2.
Cell Metab ; 31(6): 1136-1153.e7, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492393

RESUMO

Endothelial cell (EC)-derived signals contribute to organ regeneration, but angiocrine metabolic communication is not described. We found that EC-specific loss of the glycolytic regulator pfkfb3 reduced ischemic hindlimb revascularization and impaired muscle regeneration. This was caused by the reduced ability of macrophages to adopt a proangiogenic and proregenerative M2-like phenotype. Mechanistically, loss of pfkfb3 reduced lactate secretion by ECs and lowered lactate levels in the ischemic muscle. Addition of lactate to pfkfb3-deficient ECs restored M2-like polarization in an MCT1-dependent fashion. Lactate shuttling by ECs enabled macrophages to promote proliferation and fusion of muscle progenitors. Moreover, VEGF production by lactate-polarized macrophages was increased, resulting in a positive feedback loop that further stimulated angiogenesis. Finally, increasing lactate levels during ischemia rescued macrophage polarization and improved muscle reperfusion and regeneration, whereas macrophage-specific mct1 deletion prevented M2-like polarization. In summary, ECs exploit glycolysis for angiocrine lactate shuttling to steer muscle regeneration from ischemia.


Assuntos
Células Endoteliais/química , Isquemia/metabolismo , Lactatos/farmacologia , Macrófagos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Células Cultivadas , Isquemia/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/metabolismo
3.
Cell Rep ; 26(9): 2257-2265.e4, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811976

RESUMO

Cellular aspartate drives cancer cell proliferation, but signaling pathways that rewire aspartate biosynthesis to control cell growth remain largely unknown. Hypoxia-inducible factor-1α (HIF1α) can suppress tumor cell proliferation. Here, we discovered that HIF1α acts as a direct repressor of aspartate biosynthesis involving the suppression of several key aspartate-producing proteins, including cytosolic glutamic-oxaloacetic transaminase-1 (GOT1) and mitochondrial GOT2. Accordingly, HIF1α suppresses aspartate production from both glutamine oxidation as well as the glutamine reductive pathway. Strikingly, the addition of aspartate to the culture medium is sufficient to relieve HIF1α-dependent repression of tumor cell proliferation. Furthermore, these key aspartate-producing players are specifically repressed in VHL-deficient human renal carcinomas, a paradigmatic tumor type in which HIF1α acts as a tumor suppressor, highlighting the in vivo relevance of these findings. In conclusion, we show that HIF1α inhibits cytosolic and mitochondrial aspartate biosynthesis and that this mechanism is the molecular basis for HIF1α tumor suppressor activity.


Assuntos
Ácido Aspártico/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aspartato Aminotransferase Citoplasmática/metabolismo , Aspartato Aminotransferase Mitocondrial/metabolismo , Ácido Aspártico/farmacologia , Carcinoma de Células Renais/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glutamina/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/enzimologia , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/antagonistas & inibidores , Neoplasias/patologia , Oxirredução , Proteínas Supressoras de Tumor/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA