Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 352, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749074

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide. In recent years, the incidence of lung cancer subtype lung adenocarcinoma (LUAD) has steadily increased. Mitochondria, as a pivotal site of cell bioenergetics, metabolism, cell signaling, and cell death, are often dysregulated in lung cancer cells. Mitochondria maintenance and integrity depend on mitochondrial quality control proteins (MQCPs). During lung cancer progression, the levels of MQCPs could change and promote cancer cell adaptation to the microenvironment and stresses. Here, univariate and multivariate proportional Cox regression analyses were applied to develop a signature based on the level of MQCPs (dimeric form of BNIP3, DRP1, and SIRT3) in tumorous and non-tumorous samples of 80 patients with LUAD. The MQCP signature could be used to separate the patients with LUAD into high- and low-risk groups. Survival analysis indicated that patients in the high-risk group had dramatically shorter overall survival compared with the low-risk patients. Moreover, a nomogram combining clinicopathologic features and the MQCP signature was constructed and validated to predict 1-, 3-, and 5-year overall survival of the patients. Thus, this study presents a novel signature based on MQCPs as a reliable prognostic tool to predict overall survival for patients with LUAD.

2.
Chemosphere ; 308(Pt 1): 136110, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36007739

RESUMO

Titanium dioxide (TiO2) and silver (Ag) NPs are among the most used engineered inorganic nanoparticles (NPs); however, their potential effects to marine demersal fish species, are not fully understood. Therefore, this study aimed to assess the proteomic alterations induced by sub-lethal concentrations citrate-coated 25 nm ("P25") TiO2 or polyvinylpyrrolidone (PVP) coated 15 nm Ag NPs to turbot, Scophthalmus maximus. Juvenile fish were exposed to the NPs through daily feeding for 14 days. The tested concentrations were 0, 0.75 or 1.5 mg of each NPs per kg of fish per day. The determination of NPs, Titanium and Ag levels (sp-ICP-MS/ICP-MS) and histological alterations (Transmission Electron Microscopy) supported proteomic analysis performed in the liver and kidney. Proteomic sample preparation procedure (SP3) was followed by LC-MS/MS. Label-free MS quantification methods were employed to assess differences in protein expression. Functional analysis was performed using STRING web-tool. KEGG Gene Ontology suggested terms were discussed and potential biomarkers of exposure were proposed. Overall, data shows that liver accumulated more elements than kidney, presented more histological alterations (lipid droplets counts and size) and proteomic alterations. The Differentially Expressed Proteins (DEPs) were higher in Ag NPs trial. The functional analysis revealed that both NPs caused enrichment of proteins related to generic processes (metabolic pathways). Ag NPs also affected protein synthesis and nucleic acid transcription, among other processes. Proteins related to thyroid hormone transport (Serpina7) and calcium ion binding (FAT2) were suggested as biomarkers of TiO2 NPs in liver. For Ag NPs, in kidney (and at a lower degree in liver) proteins related with metabolic activity, metabolism of exogenous substances and oxidative stress (e.g.: NADH dehydrogenase and Cytochrome P450) were suggested as potential biomarkers. Data suggests adverse effects in turbot after medium/long-term exposures and the need for additional studies to validate specific biological applications of these NPs.


Assuntos
Linguados , Nanopartículas Metálicas , Ácidos Nucleicos , Animais , Cálcio , Cromatografia Líquida , Citratos , Nanopartículas Metálicas/química , NADH Desidrogenase , Povidona/química , Proteômica , Prata/química , Espectrometria de Massas em Tandem , Hormônios Tireóideos , Titânio/química
3.
Front Oncol ; 12: 852980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530310

RESUMO

Dienone compounds have been demonstrated to display tumor-selective anti-cancer activity independently of the mutational status of TP53. Previous studies have shown that cell death elicited by this class of compounds is associated with inhibition of the ubiquitin-proteasome system (UPS). Here we extend previous findings by showing that the dienone compound b-AP15 inhibits proteasomal degradation of long-lived proteins. We show that exposure to b-AP15 results in increased association of the chaperones VCP/p97/Cdc48 and BAG6 with proteasomes. Comparisons between the gene expression profile generated by b-AP15 to those elicited by siRNA showed that knock-down of the proteasome-associated deubiquitinase (DUB) USP14 is the closest related to drug response. USP14 is a validated target for b-AP15 and we show that b-AP15 binds covalently to two cysteines, Cys203 and Cys257, in the ubiquitin-binding pocket of the enzyme. Consistent with this, deletion of USP14 resulted in decreased sensitivity to b-AP15. Targeting of USP14 was, however, found to not fully account for the observed proteasome inhibition. In search for additional targets, we utilized genome-wide CRISPR/Cas9 library screening and Proteome Integral Solubility Alteration (PISA) to identify mechanistically essential genes and b-AP15 interacting proteins respectively. Deletion of genes encoding mitochondrial proteins decreased the sensitivity to b-AP15, suggesting that mitochondrial dysfunction is coupled to cell death induced by b-AP15. Enzymes known to be involved in Phase II detoxification such as aldo-ketoreductases and glutathione-S-transferases were identified as b-AP15-targets using PISA. The finding that different exploratory approaches yielded different results may be explained in terms of a "target" not necessarily connected to the "mechanism of action" thus highlighting the importance of a holistic approach in the identification of drug targets. We conclude that b-AP15, and likely also other dienone compounds of the same class, affect protein degradation and proteasome function at more than one level.

4.
Cancers (Basel) ; 14(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053433

RESUMO

BACKGROUND: Somatic mutations, copy-number variations, and genome instability of mitochondrial DNA (mtDNA) have been reported in different types of cancers and are suggested to play important roles in cancer development and metastasis. However, there is scarce information about pheochromocytomas and paragangliomas (PCCs/PGLs) formation. MATERIAL: To determine the potential roles of mtDNA alterations in sporadic PCCs/PGLs, we analyzed a panel of 26 nuclear susceptibility genes and the entire mtDNA sequence of seventy-seven human tumors, using next-generation sequencing, and compared the results with normal adrenal medulla tissues. We also performed an analysis of copy-number alterations, large mtDNA deletion, and gene and protein expression. RESULTS: Our results revealed that 53.2% of the tumors harbor a mutation in at least one of the targeted susceptibility genes, and 16.9% harbor complementary mitochondrial mutations. More than 50% of the mitochondrial mutations were novel and predicted pathogenic, affecting mitochondrial oxidative phosphorylation. Large deletions were found in 26% of tumors, and depletion of mtDNA occurred in more than 87% of PCCs/PGLs. The reduction of the mitochondrial number was accompanied by a reduced expression of the regulators that promote mitochondrial biogenesis (PCG1α, NRF1, and TFAM). Further, P62 and LC3a gene expression suggested increased mitophagy, which is linked to mitochondrial dysfunction. CONCLUSION: The pathogenic role of these finding remains to be shown, but we suggest a complementarity and a potential contributing role in PCCs/PGLs tumorigenesis.

5.
Front Oncol ; 10: 598684, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330095

RESUMO

The majority of estrogen receptor positive (ER+) breast cancer (BC) maintain the ER at metastatic sites. Despite anti-estrogen therapy, almost 30% of ER+ BC patients relapse. Thus, new therapeutic targets for ER+ BC are needed. Amino acids (AAs) may affect the metastatic capacity by affecting inflammatory cells. Essential AAs (EAAs) cannot be produced by human cells and might therefore be targetable as therapeutics. Here we sampled extracellular EAAs in vivo by microdialysis in human BC. Mass spectrometry-based proteomics was used to identify proteins affected after EAA and estradiol (E2) exposure to BC cells. Proteins relevant for patient survival were identified, knocked down in BC cells, and metastatic capability was determined in vivo in the transgenic zebrafish model. We found that lysine was the most utilized EAA in human ER+BC in vivo. In zebrafish, lysine in presence of E2 increased neutrophil-dependent dissemination of ER+ BC cells via upregulation of U2AF1 and RPN2 proteins, which both correlated with poor prognosis of ER+ BC patients in clinical databases. Knockdown of U2AF1 and RPN2 decreased the expression of several cell-adhesion molecules resulting in diminished dissemination. Dietary lysine or its related metabolic pathways may be useful therapeutic targets in ER+ BC.

6.
Cell Death Dis ; 11(10): 825, 2020 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-33011746

RESUMO

Caspase-2 is a unique and conservative cysteine protease which plays an important role in several cellular processes including apoptotic cell death. Although the molecular mechanisms of its activation remain largely unclear, a major role belongs to the architecture of the caspase-2 active center. We demonstrate that the substitution of the putative phosphorylation site of caspase-2, Serine-384 to Alanine, blocks caspase-2 processing and decreases its enzymatic activity. Strikingly, in silico analysis using molecular dynamics simulations has shown that Serine-384 is crucially involved in interactions within the caspase-2 active center. It stabilizes Arginine-378, which forms a crucial hydrogen bond with the aspartate residue of a substrate. Hence, Serine-384 is essential for supporting a proper architecture of the active center of caspase-2. Moreover, molecular modeling strongly proved steric inaccessibility of Ser-384 to be phosphorylated. Importantly, a multiple alignment has demonstrated that both Serine-384 and Arg-378 residues are highly conservative across all members of caspase family, which allows us to suggest that this diade is indispensable for caspase processing and activity. Spontaneous mutations in this diade might influence oncosuppressive function of caspases, in particular of caspase-2. Likewise, the mutation of Ser-384 is associated with the development of lung squamous cell carcinoma and adenocarcinoma. Taken together, we have uncovered a central feature of the caspase-2 activation mechanism which is crucial for the regulation of its signaling network.


Assuntos
Apoptose/genética , Caspase 2/genética , Cisteína Endopeptidases/genética , Serina/metabolismo , Adenocarcinoma/genética , Sítios de Ligação , Caspase 2/metabolismo , Caspase 9/metabolismo , Cisteína Endopeptidases/metabolismo , Humanos , Mutação de Sentido Incorreto/genética , Serina/genética
7.
Sci Rep ; 9(1): 9841, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285509

RESUMO

A large number of natural products have been advocated as anticancer agents. Many of these compounds contain functional groups characterized by chemical reactivity. It is not clear whether distinct mechanisms of action can be attributed to such compounds. We used a chemical library screening approach to demonstrate that a substantial fraction (~20%) of cytotoxic synthetic compounds containing Michael acceptor groups inhibit proteasome substrate processing and induce a cellular response characteristic of proteasome inhibition. Biochemical and structural analyses showed binding to and inhibition of proteasome-associated cysteine deubiquitinases, in particular ubiquitin specific peptidase 14 (USP14). The results suggested that compounds bind to a crevice close to the USP14 active site with modest affinity, followed by covalent binding. A subset of compounds was identified where cell death induction was closely associated with proteasome inhibition and that showed significant antineoplastic activity in a zebrafish embryo model. These findings suggest that proteasome inhibition is a relatively common mode of action by cytotoxic compounds containing Michael acceptor groups and help to explain previous reports on the antineoplastic effects of natural products containing such functional groups.


Assuntos
Antineoplásicos/administração & dosagem , Inibidores de Proteassoma/administração & dosagem , Bibliotecas de Moléculas Pequenas/administração & dosagem , Ubiquitina Tiolesterase/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina Tiolesterase/química , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
Mar Drugs ; 16(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364843

RESUMO

Cnidarian toxic products, particularly peptide toxins, constitute a promising target for biomedicine research. Indeed, cnidarians are considered as the largest phylum of generally toxic animals. However, research on peptides and toxins of sea anemones is still limited. Moreover, most of the toxins from sea anemones have been discovered by classical purification approaches. Recently, high-throughput methodologies have been used for this purpose but in other Phyla. Hence, the present work was focused on the proteomic analyses of whole-body extract from the unexplored sea anemone Bunodactis verrucosa. The proteomic analyses applied were based on two methods: two-dimensional gel electrophoresis combined with MALDI-TOF/TOF and shotgun proteomic approach. In total, 413 proteins were identified, but only eight proteins were identified from gel-based analyses. Such proteins are mainly involved in basal metabolism and biosynthesis of antibiotics as the most relevant pathways. In addition, some putative toxins including metalloproteinases and neurotoxins were also identified. These findings reinforce the significance of the production of antimicrobial compounds and toxins by sea anemones, which play a significant role in defense and feeding. In general, the present study provides the first proteome map of the sea anemone B. verrucosa stablishing a reference for future studies in the discovery of new compounds.


Assuntos
Proteômica , Anêmonas-do-Mar/genética , Animais , Biologia Computacional , Ontologia Genética , Metaloproteases/biossíntese , Metaloproteases/química , Testes de Sensibilidade Microbiana , Neurotoxinas/biossíntese , Neurotoxinas/química , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Extratos de Tecidos/química
9.
FEMS Microbiol Lett ; 362(11)2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25956174

RESUMO

Helicobacter pylori produces outer membrane vesicles (OMV), delivering bacterial substances including the oncogenic cytotoxin-associated CagA protein to their surroundings. We investigated the effects of H. pylori OMV carrying CagA (OMV-CagA) on cell junctions and ATP-binding proteome of epithelial monolayers, using proteomics, mass spectrometry and imaging. OMV-CagA localized in close vicinity of ZO-1 tight junction protein and induced histone H1 binding to ATP. We suggest the expression of novel events in the interactions between H. pylori OMV and epithelia, which may have an influence on host gene transcription and lead to different outcomes of an infection and development of cancer.


Assuntos
Trifosfato de Adenosina/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Histonas/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Células CACO-2 , Helicobacter pylori/genética , Interações Hospedeiro-Patógeno , Humanos , Microscopia Confocal , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura , Proteína da Zônula de Oclusão-1/metabolismo
10.
PLoS One ; 8(4): e59725, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565163

RESUMO

The insulin receptor substrate-1 (IRS1) is phosphorylated on serine 307 (human sequence, corresponding to murine serine 302) in response to insulin as part of a feedback loop that controls IRS1 phosphorylation on tyrosine residues by the insulin receptor. This in turn directly affects downstream signaling and is in human adipocytes implicated in the pathogenesis of insulin resistance and type 2 diabetes. The phosphorylation is inhibited by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). The mTORC1-downstream p70 ribosomal protein S6 kinase (S6K1), which is activated by insulin, can phosphorylate IRS1 at serine 307 in vitro and is considered the physiological protein kinase. Because the IRS1 serine 307-kinase catalyzes a critical step in the control of insulin signaling and constitutes a potential target for treatment of insulin resistance, it is important to know whether S6K1 is the physiological serine 307-kinase or not. We report that, by several criteria, S6K1 does not phosphorylate IRS1 at serine 307 in response to insulin in intact human primary adipocytes: (i) The time-courses for phosphorylation of S6K1 and its phosphorylation of S6 are not compatible with the phosphorylation of IRS1 at serine 307; (ii) A dominant-negative construct of S6K1 inhibits the phosphorylation of S6, without effect on the phosphorylation of IRS1 at serine 307; (iii) The specific inhibitor of S6K1 PF-4708671 inhibits the phosphorylation of S6, without effect on phosphorylation of IRS1 at serine 307. mTOR-immunoprecipitates from insulin-stimulated adipocytes contains an unidentified protein kinase specific for phosphorylation of IRS1 at serine 307, but it is not mTOR or S6K1.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Catálise , Humanos , Imidazóis/farmacologia , Proteínas Substratos do Receptor de Insulina/química , Dados de Sequência Molecular , Mutação , Peptídeos/química , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
11.
PLoS Pathog ; 8(10): e1002953, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071436

RESUMO

Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxo-dodecanoyl-L-homoserine lactone 3O-C(12)-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C(12)-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C(12)-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C(12)-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C(12)-HSL with a sensor bioassay. Moreover, 3O-C(12)-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P. aeruginosa 3O-C(12)-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C(12)-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial--human cell communication.


Assuntos
Acil-Butirolactonas/metabolismo , Movimento Celular , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Proteínas Ativadoras de ras GTPase/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Biofilmes/crescimento & desenvolvimento , Células CACO-2 , Linhagem Celular , Células Epiteliais/metabolismo , Homosserina/análogos & derivados , Homosserina/metabolismo , Humanos , Fosforilação , Pseudomonas aeruginosa/patogenicidade , Transdução de Sinais , Fatores de Virulência/biossíntese , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Mol Cell Proteomics ; 9(6): 1281-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20124224

RESUMO

Photosynthetic organisms are able to adapt to changes in light conditions by balancing the light excitation energy between the light-harvesting systems of photosystem (PS) II and photosystem I to optimize the photosynthetic yield. A key component in this process, called state transitions, is the chloroplast protein kinase Stt7/STN7, which senses the redox state of the plastoquinone pool. Upon preferential excitation of photosystem II, this kinase is activated through the cytochrome b(6)f complex and required for the phosphorylation of the light-harvesting system of photosystem II, a portion of which migrates to photosystem I (state 2). Preferential excitation of photosystem I leads to the inactivation of the kinase and to dephosphorylation of light-harvesting complex (LHC) II and its return to photosystem II (state 1). Here we compared the thylakoid phosphoproteome of the wild-type strain and the stt7 mutant of Chlamydomonas under state 1 and state 2 conditions. This analysis revealed that under state 2 conditions several Stt7-dependent phosphorylations of specific Thr residues occur in Lhcbm1/Lhcbm10, Lhcbm4/Lhcbm6/Lhcbm8/Lhcbm9, Lhcbm3, Lhcbm5, and CP29 located at the interface between PSII and its light-harvesting system. Among the two phosphorylation sites detected specifically in CP29 under state 2, one is Stt7-dependent. This phosphorylation may play a crucial role in the dissociation of CP29 from PSII and/or in its association to PSI where it serves as a docking site for LHCII in state 2. Moreover, Stt7 was required for the phosphorylation of the thylakoid protein kinase Stl1 under state 2 conditions, suggesting the existence of a thylakoid protein kinase cascade. Stt7 itself is phosphorylated at Ser(533) in state 2, but analysis of mutants with a S533A/D change indicated that this phosphorylation is not required for state transitions. Moreover, we also identified phosphorylation sites that are redox (state 2)-dependent but independent of Stt7 and additional phosphorylation sites that are redox-independent.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Proteínas Quinases/metabolismo , Proteínas de Algas/química , Sequência de Aminoácidos , Espectrometria de Massas , Dados de Sequência Molecular , Mutação/genética , Oxirredução , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Quinases/química , Alinhamento de Sequência , Análise de Sequência de Proteína , Especificidade por Substrato , Tilacoides/enzimologia
13.
Proteomics ; 6(9): 2693-704, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16572472

RESUMO

Acclimation of the green alga Chlamydomonas reinhardtii to limiting environmental CO2 induced specific protein phosphorylation at the surface of photosynthetic thylakoid membranes. Four phosphopeptides were identified and sequenced by nanospray quadrupole TOF MS from the cells acclimating to limiting CO2. One phosphopeptide originated from a protein that has not been annotated. We found that this unknown expressed protein (UEP) was encoded in the genome of C. reinhardtii. Three other phosphorylated peptides belonged to Lci5 protein encoded by the low-CO2-inducible gene 5 (lci5). The phosphorylation sites were mapped in the tandem repeats of Lci5 ensuring phosphorylation of four serine and three threonine residues in the protein. Immunoblotting with Lci5-specific antibodies revealed that Lci5 was localized in chloroplast and confined to the stromal side of the thylakoid membranes. Phosphorylation of Lci5 and UEP occurred strictly at limiting CO2; it required reduction of electron carriers in the thylakoid membrane, but was not induced by light. Both proteins were phosphorylated in the low-CO2-exposed algal mutant deficient in the light-activated protein kinase Stt7. Phosphorylation of previously unknown basic proteins UEP and Lci5 by specific redox-dependent protein kinase(s) in the photosynthetic membranes reveals the early response of green algae to limitation in the environmental inorganic carbon.


Assuntos
Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Membrana/metabolismo , Aclimatação , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Dióxido de Carbono/farmacologia , Proteínas de Membrana/efeitos dos fármacos , Dados de Sequência Molecular , Oxirredução , Fosforilação/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de Proteína
14.
FEBS Lett ; 564(1-2): 104-8, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15094049

RESUMO

The surface-exposed peptides were cleaved by trypsin from the photosynthetic thylakoid membranes isolated from the green alga Chlamydomonas reinhardtii. Two phosphorylated peptides, enriched from the peptide mixture and sequenced by nanospray quadrupole time-of-flight mass spectrometry, revealed overlapping sequences corresponding to the N-terminus of a nuclear-encoded chlorophyll a/b-binding protein CP29. In contrast to all known nuclear-encoded thylakoid proteins, the transit peptide in the mature algal CP29 was not removed but processed by methionine excision, N-terminal acetylation and phosphorylation on threonine 6. The importance of this phosphorylation site is proposed as the reason of the unique transit peptide retention.


Assuntos
Chlamydomonas reinhardtii/química , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Animais , Complexos de Proteínas Captadores de Luz/química , Espectrometria de Massas , Proteínas de Membrana/química , Fosforilação , Complexo de Proteína do Fotossistema II/química , Análise de Sequência de Proteína
15.
J Biol Chem ; 277(25): 22209-14, 2002 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-11956221

RESUMO

H(+)-translocating pyrophosphatase (H(+)-PPase) of the photosynthetic bacterium Rhodospirillum rubrum was expressed in Escherichia coli C43(DE3) cells. Recombinant H(+)-PPase was observed in inner membrane vesicles, where it catalyzed both PP(i) hydrolysis coupled with H(+) transport into the vesicles and PP(i) synthesis. The hydrolytic activity of H(+)-PPase in E. coli vesicles was eight times greater than that in R. rubrum chromatophores but exhibited similar sensitivity to the H(+)-PPase inhibitor, aminomethylenediphosphonate, and insensitivity to the soluble PPase inhibitor, fluoride. Using this expression system, we showed that substitution of Cys(185), Cys(222), or Cys(573) with aliphatic residues had no effect on the activity of H(+)-PPase but decreased its sensitivity to the sulfhydryl modifying reagent, mersalyl. H(+)-PPase lacking all three Cys residues was completely resistant to the effects of mersalyl. Mg(2+) and MgPP(i) protected Cys(185) and Cys(573) from modification by this agent but not Cys(222). Phylogenetic analyses of 23 nonredundant H(+)-PPase sequences led to classification into two subfamilies. One subfamily invariably contains Cys(222) and includes all known K(+)-independent H(+)-PPases, whereas the other incorporates a conserved Cys(573) but lacks Cys(222) and includes all known K(+)-dependent H(+)-PPases. These data suggest a specific link between the incidence of Cys at positions 222 and 573 and the K(+) dependence of H(+)-PPase.


Assuntos
Cisteína/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Mersalil/farmacologia , Pirofosfatases/biossíntese , Pirofosfatases/química , Rhodospirillum rubrum/enzimologia , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Hidrogênio/metabolismo , Hidrólise , Pirofosfatase Inorgânica , Filogenia , Plasmídeos/metabolismo , Potássio/metabolismo , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA