Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39107044

RESUMO

Drugs represent our first, and sometimes last, line of defense for many diseases, yet despite decades of research we still do not fully understand why a given drug works in one patient and fails in the next. The human gut microbiome is one of the missing puzzle pieces, due to its ability to parallel and extend host pathways for drug metabolism, along with more complex host-microbiome interactions. Herein, we focus on the well-established links between the gut microbiome and drugs for heart disease and cancer, plus emerging data on neurological disease. We highlight the interdisciplinary methods that are available and how they can be used to address major remaining knowledge gaps, including the consequences of microbial drug metabolism for treatment outcomes. Continued progress in this area promises fundamental biological insights into humans and their associated microbial communities and strategies for leveraging the microbiome to improve the practice of medicine.

2.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895199

RESUMO

Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Herein, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal study of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. 16S rRNA gene and metagenomic sequencing revealed significant shifts in gut microbial community structure during treatment with oral fluoropyrimidines, which was validated in an independent cohort. Gene abundance was also markedly changed by oral fluoropyrimidines, including an enrichment for the preTA operon, which is sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). Higher levels of preTA led to increased 5-FU depletion by the gut microbiota grown ex vivo. Germ-free and antibiotic-treated mice had increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA+ E. coli, or CRC patient stool with high preTA levels. preTA abundance was negatively associated with patient toxicities. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach is generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.

3.
Cell ; 187(12): 2952-2968.e13, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38795705

RESUMO

Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.


Assuntos
Microbioma Gastrointestinal , Glucocorticoides , Hidrogênio , Progestinas , Humanos , Progestinas/metabolismo , Hidrogênio/metabolismo , Feminino , Glucocorticoides/metabolismo , Gravidez , Animais , Família Multigênica , Fezes/microbiologia , Pregnanolona/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA