Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect ; 86(6): 574-583, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028454

RESUMO

BACKGROUND: Heterologous COVID vaccine priming schedules are immunogenic and effective. This report aims to understand the persistence of immune response to the viral vectored, mRNA and protein-based COVID-19 vaccine platforms used in homologous and heterologous priming combinations, which will inform the choice of vaccine platform in future vaccine development. METHODS: Com-COV2 was a single-blinded trial in which adults ≥ 50 years, previously immunised with single dose 'ChAd' (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, Astrazeneca) or 'BNT' (BNT162b2, tozinameran, Comirnaty, Pfizer/BioNTech), were randomised 1:1:1 to receive a second dose 8-12 weeks later with either the homologous vaccine, or 'Mod' (mRNA-1273, Spikevax, Moderna) or 'NVX' (NVX-CoV2373, Nuvaxovid, Novavax). Immunological follow-up and the secondary objective of safety monitoring were performed over nine months. Analyses of antibody and cellular assays were performed on an intention-to-treat population without evidence of COVID-19 infection at baseline or for the trial duration. FINDINGS: In April/May 2021, 1072 participants were enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (N = 540, 45% female) or BNT (N = 532, 39% female) as part of the national vaccination programme. In ChAd-primed participants, ChAd/Mod had the highest anti-spike IgG from day 28 through to 6 months, although the heterologous vs homologous geometric mean ratio (GMR) dropped from 9.7 (95% CI (confidence interval): 8.2, 11.5) at D28 to 6.2 (95% CI: 5.0, 7.7) at D196. The heterologous/homologous GMR for ChAd/NVX similarly dropped from 3.0 (95% CI:2.5,3.5) to 2.4 (95% CI:1.9, 3.0). In BNT-primed participants, decay was similar between heterologous and homologous schedules with BNT/Mod inducing the highest anti-spike IgG for the duration of follow-up. The adjusted GMR (aGMR) for BNT/Mod compared with BNT/BNT increased from 1.36 (95% CI: 1.17, 1.58) at D28 to 1.52 (95% CI: 1.21, 1.90) at D196, whilst for BNT/NVX this aGMR was 0.55 (95% CI: 0.47, 0.64) at day 28 and 0.62 (95% CI: 0.49, 0.78) at day 196. Heterologous ChAd-primed schedules produced and maintained the largest T-cell responses until D196. Immunisation with BNT/NVX generated a qualitatively different antibody response to BNT/BNT, with the total IgG significantly lower than BNT/BNT during all follow-up time points, but similar levels of neutralising antibodies. INTERPRETATION: Heterologous ChAd-primed schedules remain more immunogenic over time in comparison to ChAd/ChAd. BNT-primed schedules with a second dose of either mRNA vaccine also remain more immunogenic over time in comparison to BNT/NVX. The emerging data on mixed schedules using the novel vaccine platforms deployed in the COVID-19 pandemic, suggest that heterologous priming schedules might be considered as a viable option sooner in future pandemics. ISRCTN: 27841311 EudraCT:2021-001275-16.


Assuntos
COVID-19 , Vacinas , Adulto , Feminino , Humanos , Masculino , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Vacina BNT162 , Pandemias , Método Simples-Cego , COVID-19/prevenção & controle , Vacinação , Imunidade , Imunoglobulina G , Anticorpos Antivirais
2.
Lancet ; 399(10319): 36-49, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883053

RESUMO

BACKGROUND: Given the importance of flexible use of different COVID-19 vaccines within the same schedule to facilitate rapid deployment, we studied mixed priming schedules incorporating an adenoviral-vectored vaccine (ChAdOx1 nCoV-19 [ChAd], AstraZeneca), two mRNA vaccines (BNT162b2 [BNT], Pfizer-BioNTech, and mRNA-1273 [m1273], Moderna) and a nanoparticle vaccine containing SARS-CoV-2 spike glycoprotein and Matrix-M adjuvant (NVX-CoV2373 [NVX], Novavax). METHODS: Com-COV2 is a single-blind, randomised, non-inferiority trial in which adults aged 50 years and older, previously immunised with a single dose of ChAd or BNT in the community, were randomly assigned (in random blocks of three and six) within these cohorts in a 1:1:1 ratio to receive a second dose intramuscularly (8-12 weeks after the first dose) with the homologous vaccine, m1273, or NVX. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentrations measured by ELISA in heterologous versus homologous schedules at 28 days after the second dose, with a non-inferiority criterion of the GMR above 0·63 for the one-sided 98·75% CI. The primary analysis was on the per-protocol population, who were seronegative at baseline. Safety analyses were done for all participants who received a dose of study vaccine. The trial is registered with ISRCTN, number 27841311. FINDINGS: Between April 19 and May 14, 2021, 1072 participants were enrolled at a median of 9·4 weeks after receipt of a single dose of ChAd (n=540, 47% female) or BNT (n=532, 40% female). In ChAd-primed participants, geometric mean concentration (GMC) 28 days after a boost of SARS-CoV-2 anti-spike IgG in recipients of ChAd/m1273 (20 114 ELISA laboratory units [ELU]/mL [95% CI 18 160 to 22 279]) and ChAd/NVX (5597 ELU/mL [4756 to 6586]) was non-inferior to that of ChAd/ChAd recipients (1971 ELU/mL [1718 to 2262]) with a GMR of 10·2 (one-sided 98·75% CI 8·4 to ∞) for ChAd/m1273 and 2·8 (2·2 to ∞) for ChAd/NVX, compared with ChAd/ChAd. In BNT-primed participants, non-inferiority was shown for BNT/m1273 (GMC 22 978 ELU/mL [95% CI 20 597 to 25 636]) but not for BNT/NVX (8874 ELU/mL [7391 to 10 654]), compared with BNT/BNT (16 929 ELU/mL [15 025 to 19 075]) with a GMR of 1·3 (one-sided 98·75% CI 1·1 to ∞) for BNT/m1273 and 0·5 (0·4 to ∞) for BNT/NVX, compared with BNT/BNT; however, NVX still induced an 18-fold rise in GMC 28 days after vaccination. There were 15 serious adverse events, none considered related to immunisation. INTERPRETATION: Heterologous second dosing with m1273, but not NVX, increased transient systemic reactogenicity compared with homologous schedules. Multiple vaccines are appropriate to complete primary immunisation following priming with BNT or ChAd, facilitating rapid vaccine deployment globally and supporting recognition of such schedules for vaccine certification. FUNDING: UK Vaccine Task Force, Coalition for Epidemic Preparedness Innovations (CEPI), and National Institute for Health Research. NVX vaccine was supplied for use in the trial by Novavax.


Assuntos
Adjuvantes de Vacinas/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Imunização Secundária/efeitos adversos , Imunização Secundária/métodos , Imunogenicidade da Vacina , Vacinas de mRNA/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Idoso , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , ChAdOx1 nCoV-19/administração & dosagem , ChAdOx1 nCoV-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Reino Unido , Vacinação/efeitos adversos , Vacinação/métodos , Vacinas de mRNA/imunologia
3.
Lancet ; 398(10303): 856-869, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34370971

RESUMO

BACKGROUND: Use of heterologous prime-boost COVID-19 vaccine schedules could facilitate mass COVID-19 immunisation. However, we have previously reported that heterologous schedules incorporating an adenoviral vectored vaccine (ChAdOx1 nCoV-19, AstraZeneca; hereafter referred to as ChAd) and an mRNA vaccine (BNT162b2, Pfizer-BioNTech; hereafter referred to as BNT) at a 4-week interval are more reactogenic than homologous schedules. Here, we report the safety and immunogenicity of heterologous schedules with the ChAd and BNT vaccines. METHODS: Com-COV is a participant-blinded, randomised, non-inferiority trial evaluating vaccine safety, reactogenicity, and immunogenicity. Adults aged 50 years and older with no or well controlled comorbidities and no previous SARS-CoV-2 infection by laboratory confirmation were eligible and were recruited at eight sites across the UK. The majority of eligible participants were enrolled into the general cohort (28-day or 84-day prime-boost intervals), who were randomly assigned (1:1:1:1:1:1:1:1) to receive ChAd/ChAd, ChAd/BNT, BNT/BNT, or BNT/ChAd, administered at either 28-day or 84-day prime-boost intervals. A small subset of eligible participants (n=100) were enrolled into an immunology cohort, who had additional blood tests to evaluate immune responses; these participants were randomly assigned (1:1:1:1) to the four schedules (28-day interval only). Participants were masked to the vaccine received but not to the prime-boost interval. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentration (measured by ELISA) at 28 days after boost, when comparing ChAd/BNT with ChAd/ChAd, and BNT/ChAd with BNT/BNT. The heterologous schedules were considered non-inferior to the approved homologous schedules if the lower limit of the one-sided 97·5% CI of the GMR of these comparisons was greater than 0·63. The primary analysis was done in the per-protocol population, who were seronegative at baseline. Safety analyses were done among participants receiving at least one dose of a study vaccine. The trial is registered with ISRCTN, 69254139. FINDINGS: Between Feb 11 and Feb 26, 2021, 830 participants were enrolled and randomised, including 463 participants with a 28-day prime-boost interval, for whom results are reported here. The mean age of participants was 57·8 years (SD 4·7), with 212 (46%) female participants and 117 (25%) from ethnic minorities. At day 28 post boost, the geometric mean concentration of SARS-CoV-2 anti-spike IgG in ChAd/BNT recipients (12 906 ELU/mL) was non-inferior to that in ChAd/ChAd recipients (1392 ELU/mL), with a GMR of 9·2 (one-sided 97·5% CI 7·5 to ∞). In participants primed with BNT, we did not show non-inferiority of the heterologous schedule (BNT/ChAd, 7133 ELU/mL) against the homologous schedule (BNT/BNT, 14 080 ELU/mL), with a GMR of 0·51 (one-sided 97·5% CI 0·43 to ∞). Four serious adverse events occurred across all groups, none of which were considered to be related to immunisation. INTERPRETATION: Despite the BNT/ChAd regimen not meeting non-inferiority criteria, the SARS-CoV-2 anti-spike IgG concentrations of both heterologous schedules were higher than that of a licensed vaccine schedule (ChAd/ChAd) with proven efficacy against COVID-19 disease and hospitalisation. Along with the higher immunogenicity of ChAd/BNT compared with ChAD/ChAd, these data support flexibility in the use of heterologous prime-boost vaccination using ChAd and BNT COVID-19 vaccines. FUNDING: UK Vaccine Task Force and National Institute for Health Research.


Assuntos
Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Idoso , Anticorpos Antivirais/sangue , Vacina BNT162 , Vacinas contra COVID-19/administração & dosagem , ChAdOx1 nCoV-19 , Estudos de Equivalência como Asunto , Feminino , Humanos , Esquemas de Imunização , Imunoglobulina G/sangue , Análise de Intenção de Tratamento , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Microb Pathog ; 139: 103890, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31765768

RESUMO

Neisseria meningitidis is a human-restricted bacterium that can invade the bloodstream and cross the blood-brain barrier resulting in life-threatening sepsis and meningitis. Meningococci express a cytoplasmic peroxiredoxin-glutaredoxin (Prx5-Grx) hybrid protein that has also been identified on the bacterial surface. Here, recombinant Prx5-Grx was confirmed as a plasminogen (Plg)-binding protein, in an interaction which could be inhibited by the lysine analogue ε-aminocapronic acid. rPrx5-Grx derivatives bearing a substituted C-terminal lysine residue (rPrx5-GrxK244A), but not the active site cysteine residue (rPrx5-GrxC185A) or the sub-terminal rPrx5-GrxK230A lysine residue, exhibited significantly reduced Plg-binding. The absence of Prx5-Grx did not significantly reduce the ability of whole meningococcal cells to bind Plg, but under hydrogen peroxide-mediated oxidative stress, the N. meningitidis Δpxn5-grx mutant survived significantly better than the wild-type or complemented strains. Significantly, using human whole blood as a model of meningococcal bacteremia, it was found that the N. meningitidis Δpxn5-grx mutant had a survival defect compared with the parental or complemented strain, confirming an important role for Prx5-Grx in meningococcal pathogenesis.


Assuntos
Glutarredoxinas/metabolismo , Interações Hospedeiro-Patógeno , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/fisiologia , Peroxirredoxinas/metabolismo , Plasminogênio/metabolismo , Ensaio de Imunoadsorção Enzimática , Glutarredoxinas/química , Glutarredoxinas/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Infecções Meningocócicas/diagnóstico , Infecções Meningocócicas/mortalidade , Mutação , Peroxirredoxinas/química , Peroxirredoxinas/genética , Plasminogênio/química , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
5.
J Card Surg ; 31(5): 321-3, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26992086

RESUMO

Early-onset prosthetic valve endocarditis is a serious complication of valve replacement. We present two cases of early-onset prosthetic valve endocarditis caused by species of the anaerobic organism Prevotella, and discuss the issue of dental extraction prior to valve surgery. doi: 10.1111/jocs.12732 (J Card Surg 2016;31:321-323).


Assuntos
Endocardite Bacteriana/etiologia , Doenças das Valvas Cardíacas/cirurgia , Próteses Valvulares Cardíacas , Valva Mitral/cirurgia , Infecções Relacionadas à Prótese/etiologia , Extração Dentária/efeitos adversos , Idoso , Antibacterianos/uso terapêutico , Ecocardiografia , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/tratamento farmacológico , Feminino , Humanos , Masculino , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/tratamento farmacológico
6.
Microbiologyopen ; 5(2): 340-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732512

RESUMO

Neisseria meningitidis is a leading cause of fatal sepsis and meningitis worldwide. As for commensal species of human neisseriae, N. meningitidis inhabits the human nasopharynx and asymptomatic colonization is ubiquitous. Only rarely does the organism invade and survive in the bloodstream leading to disease. Moonlighting proteins perform two or more autonomous, often dissimilar, functions using a single polypeptide chain. They have been increasingly reported on the surface of both prokaryotic and eukaryotic organisms and shown to interact with a variety of host ligands. In some organisms moonlighting proteins perform virulence-related functions, and they may play a role in the pathogenesis of N. meningitidis. Fructose-1,6-bisphosphate aldolase (FBA) was previously shown to be surface-exposed in meningococci and involved in adhesion to host cells. In this study, FBA was shown to be present on the surface of both pathogenic and commensal neisseriae, and surface localization and anchoring was demonstrated to be independent of aldolase activity. Importantly, meningococcal FBA was found to bind to human glu-plasminogen in a dose-dependent manner. Site-directed mutagenesis demonstrated that the C-terminal lysine residue of FBA was required for this interaction, whereas subterminal lysine residues were not involved.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Lisina , Neisseria meningitidis/enzimologia , Plasminogênio/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sítios de Ligação , Membrana Celular/metabolismo , Ativação Enzimática , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/genética , Humanos , Mutação , Neisseria meningitidis/genética , Transporte Proteico , Proteínas Recombinantes
7.
Mol Microbiol ; 76(3): 605-15, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20199602

RESUMO

Fructose-1, 6-bisphosphate aldolases (FBA) are cytoplasmic glycolytic enzymes, which despite lacking identifiable secretion signals, have also been found localized to the surface of several bacteria where they bind host molecules and exhibit non-glycolytic functions. Neisseria meningitidis is an obligate human nasopharyngeal commensal, which has the capacity to cause life-threatening meningitis and septicemia. Recombinant native N. meningitidis FBA was purified and used in a coupled enzymic assay confirming that it has fructose bisphosphate aldolase activity. Cell fractionation experiments showed that meningococcal FBA is localized both to the cytoplasm and the outer membrane. Flow cytometry demonstrated that outer membrane-localized FBA was surface-accessible to FBA-specific antibodies. Mutational analysis and functional complementation was used to identify additional functions of FBA. An FBA-deficient mutant was not affected in its ability to grow in vitro, but showed a significant reduction in adhesion to human brain microvascular endothelial and HEp-2 cells compared to its isogenic parent and its complemented derivative. In summary, FBA is a highly conserved, surface exposed protein that is required for optimal adhesion of meningococci to human cells.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Neisseria meningitidis/enzimologia , Neisseria meningitidis/fisiologia , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Frutose-Bifosfato Aldolase/genética , Humanos , Proteínas de Membrana/genética , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/genética , Neisseria meningitidis/isolamento & purificação , Transporte Proteico
8.
J Bacteriol ; 189(5): 1856-65, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17172331

RESUMO

Two putative autotransporter proteins, CapA and CapB, were identified in silico from the genome sequence of Campylobacter jejuni NCTC11168. The genes encoding each protein contain homopolymeric tracts, suggestive of phase variation mediated by a slipped-strand mispairing mechanism; in each case the gene sequence contained frameshifts at these positions. The C-terminal two-thirds of the two genes, as well as a portion of the predicted signal peptides, were identical; the remaining N-terminal portions were gene specific. Both genes were cloned and expressed; recombinant polypeptides were purified and used to raise rabbit polyclonal monospecific antisera. Using immunoblotting, expression of the ca.116-kDa CapA protein was demonstrated for in vitro-grown cells of strain NCTC11168, for 4 out of 11 recent human fecal isolates, and for 2 out of 8 sequence-typed strains examined. Expression of CapB was not detected for any of the strains tested. Surface localization of CapA was demonstrated by subcellular fractionation and immunogold electron microscopy. Export of CapA was inhibited by globomycin, reinforcing the bioinformatic prediction that the protein is a lipoprotein. A capA insertion mutant had a significantly reduced capacity for association with and invasion of Caco-2 cells and failed to colonize and persist in chickens, indicating that CapA plays a role in host association and colonization by Campylobacter. In view of this demonstrated role, we propose that CapA stands for Campylobacter adhesion protein A.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Campylobacter jejuni/patogenicidade , Galinhas/microbiologia , Células Epiteliais/microbiologia , Proteínas de Choque Térmico/fisiologia , Intestinos/microbiologia , Animais , Proteínas de Bactérias/genética , Clonagem Molecular , Proteínas de Choque Térmico/genética , Humanos
9.
Infect Immun ; 70(8): 4447-61, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12117956

RESUMO

Several autotransporter proteins have previously been identified in Neisseria meningitidis. Using molecular features common to most members of the autotransporter family of proteins, we have identified an additional novel ca. 112-kDa autotransporter protein in the meningococcal genomic sequence data. This protein, designated autotransported serine protease A (AspA), has significant N-terminal homology to the secreted serine proteases (subtilases) from several organisms and contains a serine protease catalytic triad. The amino acid sequence of AspA is well-conserved in serogroup A, B, and C meningococci. In Neisseria gonorrhoeae, the AspA homologue appears to be a pseudogene. The gene encoding AspA was cloned and expressed from meningococcal strain MC58 (B15:P1.16b). Anti-AspA antibodies were detected in patients' convalescent-phase sera, suggesting that AspA is expressed in vivo during infection and is immunogenic and cross-reactive. Rabbit polyclonal monospecific anti-AspA serum was used to probe whole-cell proteins from a panel of wild-type meningococcal strains and two AspA mutant strains. Expression of the ca. 112-kDa precursor polypeptide was detected in 12 of 20 wild-type meningococcal strains examined, suggesting that AspA expression is phase variable. Immunogold electron microscopy and cellular fractionation studies showed that the AspA precursor is transported to the outer membrane and remains surface exposed. Western blot experiments confirmed that smaller, ca. 68- or 70-kDa components of AspA (AspA68 and AspA70, respectively) are then secreted into the meningococcal culture supernatant. Site-directed mutagenesis of S426 abolished secretion of both rAspA68 and rAspA70 in Escherichia coli, confirming that AspA is an autocleaved autotransporter protein. In conclusion, we characterized a novel, surface-exposed and secreted, immunogenic, meningococcal autotransporter protein.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Neisseria meningitidis/enzimologia , Serina Endopeptidases/genética , Sequência de Aminoácidos , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Clonagem Molecular , DNA Bacteriano , Escherichia coli , Expressão Gênica , Dados de Sequência Molecular , Mutagênese , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA