Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 24(1): 24, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378480

RESUMO

BACKGROUND: The mechanosensory lateral line system is an important sensory modality in fishes, informing multiple behaviours related to survival including finding food and navigating in dark environments. Given its ecological importance, we may expect lateral line morphology to be under disruptive selection early in the ecological speciation process. Here we quantify the lateral line system morphology of two ecomorphs of the cichlid fish Astatotilapia calliptera in crater Lake Masoko that have diverged from common ancestry within the past 1,000 years. RESULTS: Based on geometric morphometric analyses of CT scans, we show that the zooplanktivorous benthic ecomorph that dominates the deeper waters of the lake has large cranial lateral line canal pores, relative to those of the nearshore invertebrate-feeding littoral ecomorph found in the shallower waters. In contrast, fluorescence imaging revealed no evidence for divergence between ecomorphs in the number of either superficial or canal neuromasts. We illustrate the magnitude of the variation we observe in Lake Masoko A. calliptera in the context of the neighbouring Lake Malawi mega-radiation that comprises over 700 species. CONCLUSIONS: These results provide the first evidence of divergence in this often-overlooked sensory modality in the early stages of ecological speciation, suggesting that it may have a role in the broader adaptive radiation process.


Assuntos
Ciclídeos , Sistema da Linha Lateral , Animais , Ciclídeos/genética , Ciclídeos/anatomia & histologia , Lagos , Análise de Sequência de DNA , Malaui
2.
Nat Commun ; 12(1): 5870, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620871

RESUMO

Epigenetic variation modulates gene expression and can be heritable. However, knowledge of the contribution of epigenetic divergence to adaptive diversification in nature remains limited. The massive evolutionary radiation of Lake Malawi cichlid fishes displaying extensive phenotypic diversity despite extremely low sequence divergence is an excellent system to study the epigenomic contribution to adaptation. Here, we present a comparative genome-wide methylome and transcriptome study, focussing on liver and muscle tissues in phenotypically divergent cichlid species. In both tissues we find substantial methylome divergence among species. Differentially methylated regions (DMR), enriched in evolutionary young transposons, are associated with transcription changes of ecologically-relevant genes related to energy expenditure and lipid metabolism, pointing to a link between dietary ecology and methylome divergence. Unexpectedly, half of all species-specific DMRs are shared across tissues and are enriched in developmental genes, likely reflecting distinct epigenetic developmental programmes. Our study reveals substantial methylome divergence in closely-related cichlid fishes and represents a resource to study the role of epigenetics in species diversification.


Assuntos
Mapeamento Cromossômico , Ciclídeos/genética , Epigênese Genética , Evolução Molecular , Animais , Elementos de DNA Transponíveis , Epigenoma , Expressão Gênica , Genômica , Lagos , Fígado , Malaui , Análise de Sequência de DNA , Especificidade da Espécie
3.
Mol Biol Evol ; 37(4): 1100-1113, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821500

RESUMO

The adaptive radiation of cichlid fishes in East African Lake Malawi encompasses over 500 species that are believed to have evolved within the last 800,000 years from a common founder population. It has been proposed that hybridization between ancestral lineages can provide the genetic raw material to fuel such exceptionally high diversification rates, and evidence for this has recently been presented for the Lake Victoria region cichlid superflock. Here, we report that Lake Malawi cichlid genomes also show evidence of hybridization between two lineages that split 3-4 Ma, today represented by Lake Victoria cichlids and the riverine Astatotilapia sp. "ruaha blue." The two ancestries in Malawi cichlid genomes are present in large blocks of several kilobases, but there is little variation in this pattern between Malawi cichlid species, suggesting that the large-scale mosaic structure of the genomes was largely established prior to the radiation. Nevertheless, tens of thousands of polymorphic variants apparently derived from the hybridization are interspersed in the genomes. These loci show a striking excess of differentiation across ecological subgroups in the Lake Malawi cichlid assemblage, and parental alleles sort differentially into benthic and pelagic Malawi cichlid lineages, consistent with strong differential selection on these loci during species divergence. Furthermore, these loci are enriched for genes involved in immune response and vision, including opsin genes previously identified as important for speciation. Our results reinforce the role of ancestral hybridization in explosive diversification by demonstrating its significance in one of the largest recent vertebrate adaptive radiations.


Assuntos
Adaptação Biológica/genética , Ciclídeos/genética , Especiação Genética , Hibridização Genética , Animais , Fluxo Gênico , Haplótipos , Lagos , Malaui , Polimorfismo Genético
4.
Mol Biol Evol ; 29(1): 195-206, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22114359

RESUMO

Does hybridization play a broad innovative role in evolution? Many studies have shown hybrid origins of individual species, particularly in major adaptive radiations, but this may be a consequence, rather than a cause, of the existence of many closely related species. Cases of hybridization in the early stages of major adaptive radiations are comparatively rare. Here, we report phylogenetic evidence for ancient introgression between distinct lineages of the species-rich Lake Malawi haplochromine cichlid fishes. Mitochondrial DNA (mtDNA) sequences indicated surprisingly close relationships between the shallow-water rocky habitat "Mbuna" species and a group of dark-adapted "Deep-Benthic" species specialized for feeding in low-light conditions (dawn/dusk, under overhangs, and deep water). By contrast, analyses of nuclear amplified fragment length polymorphism data demonstrated that these Deep-Benthic cichlids were more closely related to shallow water "Shallow-Benthic" soft-sediment feeders, a group that shares similar head and body morphology. A coalescent-based computer simulation indicated that the mtDNA similarity of rocky habitat Mbuna species and dark-adapted Deep-Benthic species was due to hybridization rather than incomplete lineage sorting. Comparisons of morphology indicated that some Deep-Benthic species possessed novel morphology not present in other Lake Malawi species groups. Thus, these analyses support the hypothesis that ancient hybridization occurred within the Lake Malawi cichlid radiation, that the event occurred before the radiation of a species group adapted to low-light benthic habitats, and that this group went on to dominate the deep-water regions of Lake Malawi. The results of this study contribute to a growing literature consistent with a creative role of hybridization in the evolution of species diversity and adaptive radiations.


Assuntos
Ciclídeos/genética , Evolução Molecular , Especiação Genética , Hibridização Genética , África Subsaariana , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Análise por Conglomerados , DNA Mitocondrial , Meio Ambiente , Lagos , Dados de Sequência Molecular , Fenótipo , Filogenia
6.
Nature ; 435(7038): 90-5, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-15875022

RESUMO

The haplochromine cichlid fish of the East African Great Lakes represent some of the fastest and most species-rich adaptive radiations known, but rivers in most of Africa accommodate only a few morphologically similar species of haplochromine cichlid fish. This has been explained by the wealth of ecological opportunity in large lakes compared with rivers. It is therefore surprising that the rivers of southern Africa harbour many, ecologically diverse haplochromines. Here we present genetic, morphological and biogeographical evidence suggesting that these riverine cichlids are products of a recent adaptive radiation in a large lake that dried up in the Holocene. Haplochromine species richness peaks steeply in an area for which geological data reveal the historical existence of Lake palaeo-Makgadikgadi. The centre of this extinct lake is now a saltpan north of the Kalahari Desert, but it once hosted a rapidly evolving fish species radiation, comparable in morphological diversity to that in the extant African Great Lakes. Importantly, this lake seeded all major river systems of southern Africa with ecologically diverse cichlids. This discovery reveals how local evolutionary processes operating during a short window of ecological opportunity can have a major and lasting effect on biodiversity on a continental scale.


Assuntos
Biodiversidade , Peixes/classificação , Peixes/fisiologia , Água Doce , Filogenia , África Austral , Animais , Peixes/anatomia & histologia , Peixes/genética , Geografia , História Antiga , Modelos Biológicos , Dados de Sequência Molecular , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA