Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 12(6): e2472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860481

RESUMO

BACKGROUND: Serine residues in the protein backbone of heavily glycosylated proteoglycans are bound to glycosaminoglycans through a tetrasaccharide linker. UXS1 encodes UDP-glucuronate decarboxylase 1, which catalyzes synthesis of UDP-xylose, the donor of the first building block in the linker. Defects in other enzymes involved in formation of the tetrasaccharide linker cause so-called linkeropathies, characterized by short stature, radio-ulnar synostosis, decreased bone density, congenital contractures, dislocations, and more. METHODS: Whole exome sequencing was performed in a father and son who presented with a mild skeletal dysplasia, as well as the father's unaffected parents. Wild-type and mutant UXS1 were recombinantly expressed in Escherichia coli and purified. Enzyme activity was evaluated by LC-MS/MS. In vivo effects were studied using HeparinRed assay and metabolomics. RESULTS: The son had short long bones, normal epiphysis, and subtle metaphyseal changes especially in his legs. The likely pathogenic heterozygous variant NM_001253875.1(UXS1):c.557T>A p.(Ile186Asn) detected in the son was de novo in the father. Purified Ile186Asn-UXS1, in contrast to the wild-type, was not able to convert UDP-glucuronic acid to UDP-xylose. Plasma glycosaminoglycan levels were decreased in both son and father. CONCLUSION: This is the first report linking UXS1 to short-limbed short stature in humans.


Assuntos
Nanismo , Humanos , Masculino , Nanismo/genética , Nanismo/metabolismo , Nanismo/patologia , Carboxiliases/genética , Carboxiliases/metabolismo , Alelos , Fenótipo , Mutação , Adulto , Linhagem
2.
Artigo em Inglês | MEDLINE | ID: mdl-37849306

RESUMO

OBJECTIVE: In Norway, 89% of patients with Amyotrophic lateral sclerosis (ALS) lacks a genetic diagnose. ALS genes and genes that cause other neuromuscular or neurodegenerative disorders extensively overlap. This population-based study examined whether patients with ALS have a family history of neurological disorders and explored the occurrence of rare genetic variants associated with other neurodegenerative or neuromuscular disorders. METHODS: During a two-year period, blood samples and clinical data from patients with ALS were collected from all 17 neurological departments in Norway. Our genetic analysis involved exome sequencing and bioinformatics filtering of 510 genes associated with neurodegenerative and neuromuscular disorders. The variants were interpreted using genotype-phenotype correlations and bioinformatics tools. RESULTS: A total of 279 patients from a Norwegian population-based ALS cohort participated in this study. Thirty-one percent of the patients had first- or second-degree relatives with other neurodegenerative disorders, most commonly dementia and Parkinson's disease. The genetic analysis identified 20 possible pathogenic variants, in ATL3, AFG3L2, ATP7A, BICD2, HARS1, KIF1A, LRRK2, MSTO1, NEK1, NEFH, and SORL1, in 25 patients. NEK1 risk variants were present in 2.5% of this ALS cohort. Only four of the 25 patients reported relatives with other neurodegenerative or neuromuscular disorders. CONCLUSION: Gene variants known to cause other neurodegenerative or neuromuscular disorders, most frequently in NEK1, were identified in 9% of the patients with ALS. Most of these patients had no family history of other neurodegenerative or neuromuscular disorders. Our findings indicated that AFG3L2, ATP7A, BICD2, KIF1A, and MSTO1 should be further explored as potential ALS-causing genes.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ciclo Celular , Doenças Neurodegenerativas , Humanos , Predisposição Genética para Doença/genética , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Família , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Cinesinas/genética , Proteínas do Citoesqueleto/genética
3.
NPJ Genom Med ; 8(1): 39, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993442

RESUMO

Spondyloepimetaphyseal dysplasia with severe short stature, RPL13-related (SEMD-RPL13), MIM#618728), is a rare autosomal dominant disorder characterized by short stature and skeletal changes such as mild spondylar and epimetaphyseal dysplasia affecting primarily the lower limbs. The genetic cause was first reported in 2019 by Le Caignec et al., and six disease-causing variants in the gene coding for a ribosomal protein, RPL13 (NM_000977.3) have been identified to date. This study presents clinical and radiographic data from 12 affected individuals aged 2-64 years from seven unrelated families, showing highly variable manifestations. The affected individuals showed a range from mild to severe short stature, retaining the same radiographic pattern of spondylar- and epi-metaphyseal dysplasia, but with varying severity of the hip and knee deformities. Two new missense variants, c.548 G>A, p.(Arg183His) and c.569 G>T, p.(Arg190Leu), and a previously known splice variant c.477+1G>A were identified, confirming mutational clustering in a highly specific RNA binding motif. Structural analysis and interpretation of the variants' impact on the protein suggests that disruption of extra-ribosomal functions of the protein through binding of mRNA may play a role in the skeletal phenotype of SEMD-RPL13. In addition, we present gonadal and somatic mosaicism for the condition.

4.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37827158

RESUMO

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Assuntos
Anormalidades Congênitas , Deficiências do Desenvolvimento , Histona-Lisina N-Metiltransferase , Humanos , Mutação com Ganho de Função , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Lisina , Metilação , Metiltransferases/genética , Neoplasias/genética , Drosophila/genética , Proteínas de Drosophila/genética , Deficiências do Desenvolvimento/genética , Anormalidades Congênitas/genética
5.
Tidsskr Nor Laegeforen ; 142(4)2022 03 01.
Artigo em Inglês, Norueguês | MEDLINE | ID: mdl-35239266

RESUMO

BACKGROUND: VEXAS syndrome (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic syndrome) first described in 2020, is caused by a limited repertoire of somatic mutations in UBA1, a gene involved in the initiation of ubiquitination. Ubiquitination, adding an ubiquitin protein to a substrate protein, can have various effects on the substrate. Disruption of UBA1 function results in diverse clinical manifestations, mimicking a variety of disorders. CASE PRESENTATION: A man in his sixties presented with fever, chest pain, fatigue, pulmonary infiltrates and elevated acute phase reactants. Initially he was thought to have extra-cranial giant cell arteritis. When he developed ear and nose chondritis, a revised diagnosis of relapsing polychondritis was made. Subsequently he developed macrocytic anaemia and thrombocytopenia. His condition remained resistant to medical therapy and he died eight years after disease onset. Analysis of stored DNA revealed a somatic mutation in UBA1 confirming the diagnosis of VEXAS syndrome. INTERPRETATION: VEXAS syndrome is a newly identified inflammatory disorder due to an acquired mutation in haematopoietic bone marrow cells in older men. The syndrome may be misdiagnosed as treatment-refractory relapsing polychondritis, polyarteritis nodosa, Sweet syndrome or giant cell arteritis. We describe the first individual with molecularly confirmed VEXAS syndrome in Norway.


Assuntos
Arterite de Células Gigantes , Síndromes Mielodisplásicas , Pancitopenia , Policondrite Recidivante , Idoso , Transtornos da Insuficiência da Medula Óssea , Humanos , Inflamação , Masculino , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Policondrite Recidivante/complicações , Policondrite Recidivante/diagnóstico , Policondrite Recidivante/genética , Enzimas Ativadoras de Ubiquitina/genética
6.
Am J Med Genet A ; 188(1): 272-282, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515416

RESUMO

By clinical whole exome sequencing, we identified 12 individuals with ages 3 to 37 years, including three individuals from the same family, with a consistent phenotype of intellectual disability (ID), macrocephaly, and overgrowth of adenoid tissue. All 12 individuals harbored a rare heterozygous variant in ZBTB7A which encodes the transcription factor Zinc finger and BTB-domain containing protein 7A, known to play a role in lympho- and hematopoiesis. ID was generally mild. Fetal hemoglobin (HbF) fraction was elevated 2.2%-11.2% (reference value <2% in individuals > 6 months) in four of the five individuals for whom results were available. Ten of twelve individuals had undergone surgery at least once for lymphoid hypertrophy limited to the pharynx. In the most severely affected individual (individual 1), airway obstruction resulted in 17 surgical procedures before the age of 13 years. Sleep apnea was present in 8 of 10 individuals. In the nine unrelated individuals, ZBTB7A variants were novel and de novo. The six frameshift/nonsense and four missense variants were spread throughout the gene. This is the first report of a cohort of individuals with this novel syndromic neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Hemoglobina Fetal , Humanos , Deficiência Intelectual/genética , Tecido Linfoide , Megalencefalia/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética
7.
J Hum Genet ; 66(11): 1101-1112, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33980986

RESUMO

RBL2/p130, a member of the retinoblastoma family of proteins, is a key regulator of cell division and propagates irreversible senescence. RBL2/p130 is also involved in neuronal differentiation and survival, and eliminating Rbl2 in certain mouse strains leads to embryonic lethality accompanied by an abnormal central nervous system (CNS) phenotype. Conflicting reports exist regarding a role of RBL2/p130 in transcriptional regulation of DNA methyltransferases (DNMTs), as well as the control of telomere length. Here we describe the phenotype of three patients carrying bi-allelic RBL2-truncating variants. All presented with infantile hypotonia, severe developmental delay and microcephaly. Malignancies were not reported in carriers or patients. Previous studies carried out on mice and human cultured cells, associated RBL2 loss to DNA methylation and telomere length dysregulation. Here, we investigated whether patient cells lacking RBL2 display related abnormalities. The study of primary patient fibroblasts did not detect abnormalities in expression of DNMTs. Furthermore, methylation levels of whole genome DNA, and specifically of pericentromeric repeats and subtelomeric regions, were unperturbed. RBL2-null fibroblasts show no evidence for abnormal elongation by telomeric recombination. Finally, gradual telomere shortening, and normal onset of senescence were observed following continuous culturing of RBL2-mutated fibroblasts. Thus, this study resolves uncertainties regarding a potential non-redundant role for RBL2 in DNA methylation and telomere length regulation, and indicates that loss of function variants in RBL2 cause a severe autosomal recessive neurodevelopmental disorder in humans.


Assuntos
Disfunção Cognitiva/genética , Metilação de DNA/genética , Proteína p130 Retinoblastoma-Like/genética , Encurtamento do Telômero/genética , Adolescente , Adulto , Alelos , Animais , Criança , Disfunção Cognitiva/complicações , Disfunção Cognitiva/fisiopatologia , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Fibroblastos/metabolismo , Predisposição Genética para Doença , Humanos , Masculino , Metiltransferases/genética , Camundongos , Microcefalia/complicações , Microcefalia/genética , Microcefalia/fisiopatologia , Atividade Motora/fisiologia , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Telômero/genética , Sequenciamento do Exoma
8.
Eur J Hum Genet ; 29(6): 920-929, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33288889

RESUMO

An accurate diagnosis of syndromic craniosynostosis (CS) is important for personalized treatment, surveillance, and genetic counselling. We describe detailed clinical criteria for syndromic CS and the distribution of genetic diagnoses within the cohort. The prospective registry of the Norwegian National Unit for Craniofacial Surgery was used to retrieve individuals with syndromic CS born between 1 January 2002 and 30 June 2019. All individuals were assessed by a clinical geneticist and classified using defined clinical criteria. A stepwise approach consisting of single-gene analysis, comparative genomic hybridization (aCGH), and exome-based high-throughput sequencing, first filtering for 72 genes associated with syndromic CS, followed by an extended trio-based panel of 1570 genes were offered to all syndromic CS cases. A total of 381 individuals were registered with CS, of whom 104 (27%) were clinically classified as syndromic CS. Using the single-gene analysis, aCGH, and custom-designed panel, a genetic diagnosis was confirmed in 73% of the individuals (n = 94). The diagnostic yield increased to 84% after adding the results from the extended trio-based panel. Common causes of syndromic CS were found in 53 individuals (56%), whereas 26 (28%) had other genetic syndromes, including 17 individuals with syndromes not commonly associated with CS. Only 15 individuals (16%) had negative genetic analyses. Using the defined combination of clinical criteria, we detected among the highest numbers of syndromic CS cases reported, confirmed by a high genetic diagnostic yield of 84%. The observed genetic heterogeneity encourages a broad genetic approach in diagnosing syndromic CS.


Assuntos
Craniossinostoses/genética , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fenótipo , Adulto , Criança , Craniossinostoses/diagnóstico , Feminino , Loci Gênicos , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Masculino , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Síndrome
9.
Am J Med Genet A ; 179(9): 1884-1894, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313512

RESUMO

Brachyolmia is a skeletal dysplasia characterized by short spine-short stature, platyspondyly, and minor long bone abnormalities. We describe 18 patients, from different ethnic backgrounds and ages ranging from infancy to 19 years, with the autosomal recessive form, associated with PAPSS2. The main clinical features include disproportionate short stature with short spine associated with variable symptoms of pain, stiffness, and spinal deformity. Eight patients presented prenatally with short femora, whereas later in childhood their short-spine phenotype emerged. We observed the same pattern of changing skeletal proportion in other patients. The radiological findings included platyspondyly, irregular end plates of the elongated vertebral bodies, narrow disc spaces and short over-faced pedicles. In the limbs, there was mild shortening of femoral necks and tibiae in some patients, whereas others had minor epiphyseal or metaphyseal changes. In all patients, exome and Sanger sequencing identified homozygous or compound heterozygous PAPSS2 variants, including c.809G>A, common to white European patients. Bi-parental inheritance was established where possible. Low serum DHEAS, but not overt androgen excess was identified. Our study indicates that autosomal recessive brachyolmia occurs across continents and may be under-recognized in infancy. This condition should be considered in the differential diagnosis of short femora presenting in the second trimester.


Assuntos
Nanismo/genética , Complexos Multienzimáticos/genética , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Sulfato Adenililtransferase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Nanismo/diagnóstico por imagem , Nanismo/fisiopatologia , Feminino , Genes Recessivos/genética , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Anormalidades Musculoesqueléticas/diagnóstico por imagem , Anormalidades Musculoesqueléticas/fisiopatologia , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/fisiopatologia , Linhagem , Radiografia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiopatologia , Sequenciamento do Exoma , Adulto Jovem
10.
Genet Med ; 21(3): 663-675, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30158690

RESUMO

PURPOSE: Defects in the cohesin pathway are associated with cohesinopathies, notably Cornelia de Lange syndrome (CdLS). We aimed to delineate pathogenic variants in known and candidate cohesinopathy genes from a clinical exome perspective. METHODS: We retrospectively studied patients referred for clinical exome sequencing (CES, N = 10,698). Patients with causative variants in novel or recently described cohesinopathy genes were enrolled for phenotypic characterization. RESULTS: Pathogenic or likely pathogenic single-nucleotide and insertion/deletion variants (SNVs/indels) were identified in established disease genes including NIPBL (N = 5), SMC1A (N = 14), SMC3 (N = 4), RAD21 (N = 2), and HDAC8 (N = 8). The phenotypes in this genetically defined cohort skew towards the mild end of CdLS spectrum as compared with phenotype-driven cohorts. Candidate or recently reported cohesinopathy genes were supported by de novo SNVs/indels in STAG1 (N = 3), STAG2 (N = 5), PDS5A (N = 1), and WAPL (N = 1), and one inherited SNV in PDS5A. We also identified copy-number deletions affecting STAG1 (two de novo, one of unknown inheritance) and STAG2 (one of unknown inheritance). Patients with STAG1 and STAG2 variants presented with overlapping features yet without characteristic facial features of CdLS. CONCLUSION: CES effectively identified disease-causing alleles at the mild end of the cohensinopathy spectrum and enabled characterization of candidate disease genes.


Assuntos
Variação Biológica da População/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Adolescente , Alelos , Antígenos Nucleares/genética , Proteínas de Transporte/genética , Criança , Pré-Escolar , Estudos de Coortes , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Exoma/genética , Feminino , Frequência do Gene/genética , Heterogeneidade Genética , Humanos , Mutação INDEL/genética , Masculino , Mutação , Proteínas Nucleares/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , Estudos Retrospectivos , Sequenciamento do Exoma/métodos , Coesinas
11.
Biochem J ; 457(1): 99-105, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24144304

RESUMO

PCSK9 (proprotein convertase subtilisin/kexin type 9) binds to the LDLR (low-density lipoprotein receptor) at the cell surface and disrupts recycling of the LDLR. However, PCSK9 also interacts with the LDLR in the ER (endoplasmic reticulum). In the present study we have investigated the role of PCSK9 for the transport of the LDLR from the ER to the cell membrane. A truncated LDLR consisting of the ectodomain (ED-LDLR) was used for these studies to avoid PCSK9-mediated degradation of the LDLR. The amount of secreted ED-LDLR was used as a measure of the amount of ED-LDLR transported from the ER. From co-transfection experiments of various PCSK9 and ED-LDLR plasmids, PCSK9 increased the amount of WT (wild-type) ED-LDLR in the medium, but not of an ED-LDLR lacking the EGF (epidermal growth factor)-A repeat or of a Class 2a mutant ED-LDLR which fails to exit the ER. Mutant PCSK9s which failed to undergo autocatalytic cleavage or failed to exit the ER, failed to increase the amount of WT-ED-LDLR in the medium. These mutants also reduced the amount of WT-ED-LDLR intracellularly, which could partly be prevented by the proteasome inhibitor lactacystine. WT-ED-LDLR promoted autocatalytic cleavage of pro-PCSK9. The findings of the present study indicate that the binding of WT-ED-LDLR to pro-PCSK9 in the ER promotes autocatalytic cleavage of PCSK9, and autocatalytically cleaved PCSK9 acts as a chaperone to promote the exit of WT-ED-LDLR from the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/fisiologia , Pró-Proteína Convertases/fisiologia , Receptores de LDL/metabolismo , Serina Endopeptidases/fisiologia , Catálise , Membrana Celular/metabolismo , Células Hep G2 , Homeostase , Humanos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/química , Domínios e Motivos de Interação entre Proteínas/fisiologia , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , Precursores de Proteínas/química , Precursores de Proteínas/fisiologia , Transporte Proteico , Proteólise , Receptores de LDL/química , Serina Endopeptidases/química
12.
J Lipid Res ; 54(6): 1560-1566, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23509406

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the LDL receptor (LDLR) at the cell surface and reroutes the internalized LDLR to intracellular degradation. In this study, we have shown that PCSK9-mediated degradation of the full-length 160 kDa LDLR generates a 17 kDa C-terminal LDLR fragment. This fragment was not generated from mutant LDLRs resistant to PCSK9-mediated degradation or when degradation was prevented by chemicals such as ammonium chloride or the cysteine cathepsin inhibitor E64d. The observation that the 17 kDa fragment was only detected when the cells were cultured in the presence of the γ-secretase inhibitor DAPT indicates that this 17 kDa fragment undergoes γ-secretase cleavage within the transmembrane domain. The failure to detect the complementary 143 kDa ectodomain fragment is likely to be due to its rapid degradation in the endosomal lumen. The 17 kDa C-terminal LDLR fragment was also generated from a Class 5 mutant LDLR undergoing intracellular degradation. Thus, one may speculate that an LDLR with bound PCSK9 and a Class 5 LDLR with bound LDL are degraded by a similar mechanism that could involve ectodomain cleavage in the endosome.


Assuntos
Lipoproteínas LDL/metabolismo , Mutação , Pró-Proteína Convertases/metabolismo , Proteólise , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Hep G2 , Humanos , Lipoproteínas LDL/genética , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Estrutura Terciária de Proteína , Receptores de LDL/genética , Serina Endopeptidases/genética
13.
Atherosclerosis ; 225(2): 370-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23102784

RESUMO

OBJECTIVE: To study whether mutations in the SORT1 gene could be a cause of autosomal dominant hypercholesterolemia and to study the effect of sortilin on the binding and internalization of low density lipoprotein (LDL). METHODS: 842 unrelated hypercholesterolemic subjects without mutations in genes known to cause autosomal dominant hypercholesterolemia, were screened for mutations in the SORT1 gene by DNA sequencing. Transfections of wild-type or mutant SORT1 plasmids in HeLa T-REx cells and the use of siRNA were used to study the effect of sortilin on the number of cell-surface LDL receptors and on the binding and internalization of LDL. RESULTS: A total of 45 mutations in the SORT1 gene were identified of which 15 were missense mutations. Eight of these were selected for in vitro studies, of which none had a major impact on the amount of LDL bound to the cell surface. There was a positive correlation between the amount of sortilin on the cell surface and the amount of LDL bound. The observation that a mutant sortilin which is predominantly found on the cell surface rather than in post-Golgi compartments, bound very high amounts of LDL, indicates that sortilin does not increase the binding of LDL through an intracellular mechanism. Rather, our data indicate that sortilin binds LDL on the cell surface. CONCLUSION: Even though sortilin binds and internalizes LDL by receptor-mediated endocytosis, mutations in the SORT1 gene are unlikely to cause autosomal dominant hypercholesterolemia and may only have a marginal effect on plasma LDL cholesterol levels.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Membrana Celular/metabolismo , LDL-Colesterol/sangue , Hiperlipoproteinemia Tipo II/genética , Mutação , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adulto , Idoso , Análise Mutacional de DNA , Endocitose , Feminino , Predisposição Genética para Doença , Células HeLa , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Receptores de LDL/metabolismo , Fatores de Risco , Índice de Gravidade de Doença , Transfecção
14.
Transl Res ; 160(2): 125-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22683370

RESUMO

Secreted proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) at the cell surface and disrupts the normal recycling of the LDLR. When human PCSK9 is injected into LDLR-deficient mice, PCSK9 is still rapidly cleared by the liver. This finding may suggest that PCSK9 is physiologically also cleared by receptors other than the LDLR. An alternative explanation could be that PCSK9 has undergone modifications during purification and is cleared by scavenger receptors on liver endothelial sinusoidal cells when injected into mice. If the only mechanism for clearing PCSK9 in humans is through the LDLR, one would expect that differences in the number of LDLRs would affect the plasma levels of low-density lipoprotein cholesterol (LDLC) and PCSK9 in a similar fashion. In this study, levels of LDLC and PCSK9 were measured in familial hypercholesterolemia (FH) homozygotes, FH heterozygotes, and normocholesterolemic subjects. The ratio between the levels of LDLC and PCSK9 was 1.7-fold higher in FH heterozygotes and 3-fold higher in FH homozygotes than in the normocholesterolemic subjects. Thus, defective LDLRs have a greater impact on the levels of LDLC than on the levels of PCSK9. By assuming that the rate of PCSK9 synthesis is similar in the 3 groups, this finding suggests that in humans, plasma PCSK9 is also cleared by LDLR-independent mechanisms.


Assuntos
LDL-Colesterol/sangue , Hiperlipoproteinemia Tipo II/metabolismo , Pró-Proteína Convertases/sangue , Receptores de LDL/metabolismo , Serina Endopeptidases/sangue , Adolescente , Adulto , Animais , Remoção de Componentes Sanguíneos , Feminino , Genótipo , Heterozigoto , Homozigoto , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia , Lipídeos/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Adulto Jovem
15.
J Lipid Res ; 52(10): 1787-94, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21771976

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) at the cell surface and disrupts the normal recycling of the LDLR. In this study, we investigated the role of the C-terminal domain for the activity of PCSK9. Experiments in which conserved residues and histidines on the surface of the C-terminal domain were mutated indicated that no specific residues of the C-terminal domain, apart from those responsible for maintaining the overall structure, are required for the activity of PCSK9. Rather, the net charge of the C-terminal domain is important. The more positively charged the C-terminal domain, the higher the activity toward the LDLR. Moreover, replacement of the C-terminal domain with an unrelated protein of comparable size led to significant activity of the chimeric protein. We conclude that the role of the evolutionary, poorly conserved C-terminal domain for the activity of PCSK9 reflects its overall positive charge and size and not the presence of specific residues involved in protein-protein interactions.


Assuntos
Endossomos/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Alanina/química , Alanina/metabolismo , Sequência de Aminoácidos , Endossomos/química , Células Hep G2 , Histidina/química , Histidina/metabolismo , Humanos , Dados de Sequência Molecular , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Ligação Proteica , Receptores de LDL/química , Células Tumorais Cultivadas
16.
Genet Test Mol Biomarkers ; 13(2): 243-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19371225

RESUMO

Familial hypercholesterolemia is caused by mutations in the low-density lipoprotein receptor (LDLR) gene. The synonymous mutation R385R has been shown to introduce a cryptic splice site in exon 9. The aims of this study were to establish to what extent the cryptic splice site is selected ahead of the normal splice site and to determine if the aberrant transcript is degraded by nonsense-mediated mRNA decay. The relative amount of the aberrant transcript was determined by real-time PCR and found to vary from 25% to 45% in heterozygous familial hypercholesterolemia individuals. Epstein-Barr virus-transformed lymphocytes were established from one heterozygous patient, and treatment of these cells with cycloheximide increased the amount of aberrant transcript, indicating that the aberrant transcripts are degraded by nonsense-mediated mRNA decay. Cloning of reverse transcriptase-PCR products from one of the heterozygous patients and introduction of the R385R mutation into a minigene reporter construct revealed an almost exclusive use of the cryptic splice site in the mutated allele. Thus, the synonymous mutation R385R converts the mutated allele to a null allele unable to produce functional mRNA.


Assuntos
Processamento Alternativo/fisiologia , Mutação , Receptores de LDL/genética , Receptores de LDL/metabolismo , Adolescente , Adulto , Alelos , Sequência de Bases , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transformação Celular Viral , Células Cultivadas , Criança , Éxons , Feminino , Genes Reporter , Herpesvirus Humano 4/genética , Heterozigoto , Humanos , Hiperlipoproteinemia Tipo II/genética , Íntrons , Linfócitos/metabolismo , Linfócitos/virologia , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Dados de Sequência Molecular , Sítios de Splice de RNA/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA