Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 199(8): 2815-2822, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28855309

RESUMO

In this study, we determined the role of IL-21R signaling in Mycobacterium tuberculosis infection, using IL-21R knockout (KO) mice. A total of 50% of M. tuberculosis H37Rv-infected IL-21R KO mice died in 6 mo compared with no deaths in infected wild type (WT) mice. M. tuberculosis-infected IL-21R KO mice had enhanced bacterial burden and reduced infiltration of Ag-specific T cells in lungs compared with M. tuberculosis-infected WT mice. Ag-specific T cells from the lungs of M. tuberculosis-infected IL-21R KO mice had increased expression of T cell inhibitory receptors, reduced expression of chemokine receptors, proliferated less, and produced less IFN- γ, compared with Ag-specific T cells from the lungs of M. tuberculosis-infected WT mice. T cells from M. tuberculosis-infected IL-21R KO mice were unable to induce optimal macrophage responses to M. tuberculosis. This may be due to a decrease in the Ag-specific T cell population. We also found that IL-21R signaling is associated with reduced expression of a transcriptional factor Eomesodermin and enhanced functional capacity of Ag-specific T cells of M. tuberculosis-infected mice. The sum of our findings suggests that IL-21R signaling is essential for the optimal control of M. tuberculosis infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Receptores de Interleucina-21/metabolismo , Tuberculose/imunologia , Animais , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Interferon gama/metabolismo , Pulmão/microbiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-21/genética , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
2.
PLoS Pathog ; 12(10): e1005972, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27783671

RESUMO

In this study, we developed a mouse model of type 2 diabetes mellitus (T2DM) using streptozotocin and nicotinamide and identified factors that increase susceptibility of T2DM mice to infection by Mycobacterium tuberculosis (Mtb). All Mtb-infected T2DM mice and 40% of uninfected T2DM mice died within 10 months, whereas all control mice survived. In Mtb-infected mice, T2DM increased the bacterial burden and pro- and anti-inflammatory cytokine and chemokine production in the lungs relative to those in uninfected T2DM mice and infected control mice. Levels of IL-6 also increased. Anti-IL-6 monoclonal antibody treatment of Mtb-infected acute- and chronic-T2DM mice increased survival (to 100%) and reduced pro- and anti-inflammatory cytokine expression. CD11c+ cells were the major source of IL-6 in Mtb-infected T2DM mice. Pulmonary natural killer (NK) cells in Mtb-infected T2DM mice further increased IL-6 production by autologous CD11c+ cells through their activating receptors. Anti-NK1.1 antibody treatment of Mtb-infected acute-T2DM mice increased survival and reduced pro- and anti-inflammatory cytokine expression. Furthermore, IL-6 increased inflammatory cytokine production by T lymphocytes in pulmonary tuberculosis patients with T2DM. Overall, the results suggest that NK-CD11c+ cell interactions increase IL-6 production, which in turn drives the pathological immune response and mortality associated with Mtb infection in diabetic mice.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Células Matadoras Naturais/imunologia , Tuberculose/complicações , Tuberculose/imunologia , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mycobacterium tuberculosis , Reação em Cadeia da Polimerase em Tempo Real , Receptor Cross-Talk/imunologia
3.
Eur J Immunol ; 46(2): 464-79, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26471500

RESUMO

Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth.


Assuntos
Bacteriemia/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Pneumonia/imunologia , Tromboplastina/metabolismo , Tuberculoma/imunologia , Tuberculose Pulmonar/imunologia , Animais , Bacteriemia/etiologia , Coagulação Sanguínea , Diferenciação Celular , Feminino , Fibrina/genética , Fibrina/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/crescimento & desenvolvimento , Pneumonia/etiologia , Tromboplastina/genética , Tuberculoma/etiologia , Tuberculose Pulmonar/complicações
4.
PLoS Pathog ; 11(2): e1004617, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25659138

RESUMO

In this study, we found that a subpopulation of CD4(+)CD25(+) (85% Foxp3(+)) cells from persons with latent tuberculosis infection (LTBI) inhibits growth of M. tuberculosis (M. tb) in human monocyte-derived macrophages (MDMs). A soluble factor, Rho GDP dissociation inhibitor (D4GDI), produced by apoptotic CD4(+)CD25(+) (85% Foxp3(+)) cells is responsible for this inhibition of M. tb growth in human macrophages and in mice. M. tb-expanded CD4(+C)D25(+)Foxp3(+)D4GDI(+) cells do not produce IL-10, TGF-ß and IFN-γ. D4GDI inhibited growth of M. tb in MDMs by enhancing production of IL-1ß, TNF-α and ROS, and by increasing apoptosis of M. tb-infected MDMs. D4GDI was concentrated at the site of disease in tuberculosis patients, with higher levels detected in pleural fluid than in serum. However, in response to M. tb, PBMC from tuberculosis patients produced less D4GDI than PBMC from persons with LTBI. M. tb-expanded CD4+CD25+ (85% Foxp3(+)) cells and D4GDI induced intracellular M. tb to express the dormancy survival regulator DosR and DosR-dependent genes, suggesting that D4GDI induces a non-replicating state in the pathogen. Our study provides the first evidence that a subpopulation of CD4(+)CD25(+) (85% Foxp3+) cells enhances immunity to M. tb, and that production of D4GDI by this subpopulation inhibits M. tb growth.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Tuberculose Latente/imunologia , Macrófagos/microbiologia , Subpopulações de Linfócitos T/imunologia , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/imunologia , Adolescente , Adulto , Idoso , Animais , Apoptose/imunologia , Separação Celular , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Pessoa de Meia-Idade , Mycobacterium tuberculosis , Reação em Cadeia da Polimerase em Tempo Real , Tuberculose/imunologia , Adulto Jovem
5.
J Infect Dis ; 209(4): 578-87, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24041785

RESUMO

Previously, we found that interleukin 22 (IL-22) inhibits intracellular growth of Mycobacterium tuberculosis in human monocyte-derived macrophages (MDMs). In the current study, we determined the mechanisms underlying these effects. We found that W7, a phagolysosomal fusion inhibitor, abrogates IL-22-dependent M. tuberculosis growth inhibition in MDMs, suggesting that IL-22 acts through enhanced phagolysosomal fusion. Our microarray analysis indicated that recombinant IL-22 (rIL-22) enhances the expression of an intracellular signaling molecule, calgranulin A. This was confirmed by real-time polymerase chain reaction, Western blot, and confocal microscopy. Calgranulin A small interfering RNA (siRNA) abrogated rIL-22-dependent growth inhibition of M. tuberculosis in MDMs. IL-22 enhanced Rab7 expression and downregulated Rab14 expression of M. tuberculosis-infected MDMs, and these effects were reversed by calgranulin A siRNA. These results suggest that M. tuberculosis growth inhibition by IL-22 depends on calgranulin A and enhanced phagolysosomal fusion, which is associated with increased Rab7 and reduced Rab14 expression.


Assuntos
Calgranulina A/biossíntese , Interleucinas/farmacologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Calgranulina A/genética , Calgranulina A/imunologia , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Interleucinas/deficiência , Interleucinas/genética , Interleucinas/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose/imunologia , Fagossomos/imunologia , Fagossomos/microbiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Estatísticas não Paramétricas , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Interleucina 22
6.
Am J Respir Cell Mol Biol ; 48(1): 44-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23002099

RESUMO

Elevated concentrations of plasminogen activator inhibitor-1 (PAI-1) are associated with pleural injury, but its effects on pleural organization remain unclear. A method of adenovirus-mediated delivery of genes of interest (expressed under a cytomegalovirus promoter) to rabbit pleura was developed and used with lacZ and human (h) PAI-1. Histology, ß-galactosidase staining, Western blotting, enzymatic and immunohistochemical analyses of pleural fluids (PFs), lavages, and pleural mesothelial cells were used to evaluate the efficiency and effects of transduction. Transduction was selective and limited to the pleural mesothelial monolayer. The intrapleural expression of both genes was transient, with their peak expression at 4 to 5 days. On Day 5, hPAI-1 (40-80 and 200-400 nM of active and total hPAI-1 in lavages, respectively) caused no overt pleural injury, effusions, or fibrosis. The adenovirus-mediated delivery of hPAI-1 with subsequent tetracycline-induced pleural injury resulted in a significant exacerbation of the pleural fibrosis observed on Day 5 (P = 0.029 and P = 0.021 versus vehicle and adenoviral control samples, respectively). Intrapleural fibrinolytic therapy (IPFT) with plasminogen activators was effective in both animals overexpressing hPAI-1 and control animals with tetracycline injury alone. An increase in intrapleural active PAI-1 (from 10-15 nM in control animals to 20-40 nM in hPAI-1-overexpressing animals) resulted in the increased formation of PAI-1/plasminogen activator complexes in vivo. The decrease in intrapleural plasminogen-activating activity observed at 10 to 40 minutes after IPFT correlates linearly with the initial concentration of active PAI-1. Therefore, active PAI-1 in PFs affects the outcome of IPFT, and may be both a biomarker of pleural injury and a molecular target for its treatment.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/genética , Pleura/lesões , Adenoviridae/genética , Animais , Modelos Animais de Doenças , Epitélio/virologia , Expressão Gênica , Humanos , Óperon Lac , Pleura/efeitos dos fármacos , Pleura/metabolismo , Pleura/patologia , Coelhos , Proteínas Recombinantes/genética , Tetraciclina/toxicidade , Terapia Trombolítica/métodos , Transdução Genética
7.
J Bacteriol ; 195(1): 66-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104803

RESUMO

The ESX-1 secretion system exports the immunomodulatory protein ESAT-6 and other proteins important in the pathogenesis of Mycobacterium tuberculosis. Components and substrates of ESX-1 are encoded at several loci, but the regulation of the encoding genes is only partially understood. In this study, we investigated the role of the MprAB two-component system in the regulation of ESX-1 activity. We determined that MprAB directly regulates the espA gene cluster, a locus necessary for ESX-1 function. Transcript mapping determined that the five genes in the cluster form an operon with two transcriptional start points, and several MprA binding sites were detected in the espA promoter. Expression analyses and promoter constructs indicated that MprAB represses the espA operon. However, the MprAB mutant Rv-D981 secreted lower levels of EspA, ESAT-6, and the ESX-1 substrate EspB than control strains. Secretion of CFP10, which is normally cosecreted with ESAT-6, was similar in Rv-D981 and control strains, further demonstrating aberrant ESX-1 activity in the mutant. ESAT-6 induces proinflammatory cytokines, and macrophages infected with Rv-D981 elicited lower levels of interleukin 1ß (IL-1ß) and tumor necrosis factor alpha (TNF-α), consistent with the reduced levels of ESAT-6. These findings indicate that MprAB modulates ESX-1 function and reveal a new role for MprAB in host-pathogen interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Quinases/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Células Cultivadas , Citocinas/genética , Proteínas de Homeodomínio/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/metabolismo , Família Multigênica/fisiologia , Mutação , Mycobacterium tuberculosis/genética , Óperon/fisiologia , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real
8.
Tuberculosis (Edinb) ; 91 Suppl 1: S69-74, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22088322

RESUMO

The present study tested the hypothesis that the scavenger receptor SR-A modulates granuloma formation in response to pulmonary infection with Mycobacterium tuberculosis (MTB). To test this hypothesis, we monitored survival and histopathology in WT and SR-A-deficient mice following aerosol infection with MTB Rv. SR-A-deficient (SR-A-/-) mice infected with MTB survived significantly longer than WT mice; the mean survival of SR-A-/- mice exceeded 430 days compared to 230 days for WT mice. Early granuloma formation was not impaired in SR-A-/- mice. The extended survival of SR-A-/- mice was associated with 13- and 3-fold higher number of CD4+ lymphocytes and antigen presenting cells in SR-A-/- lungs compared to WT mice 280 after infection. The histopathology of chronically infected SR-A-/- lungs, however, was marked by abundant cholesterol clefts in parenchymal lesions containing infection in multinucleated giant cells. The present study indicates SR-A as a candidate gene of the innate immune system influencing the chronic phase of M. tuberculosis infection.


Assuntos
Receptores Depuradores Classe A/fisiologia , Tuberculose Pulmonar/metabolismo , Animais , Contagem de Linfócito CD4 , Células Cultivadas , Colesterol/metabolismo , Doença Crônica , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Células Gigantes/patologia , Granuloma/microbiologia , Imunidade Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , Receptores Depuradores Classe A/deficiência , Receptores Depuradores Classe A/imunologia , Análise de Sobrevida , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia
9.
J Immunol ; 186(3): 1638-45, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209279

RESUMO

Macrophages are a major component of the innate immune response, comprising the first line of defense against various intracellular pathogens, including Mycobacterium tuberculosis. In this report, we studied the factors that regulate growth of M. tuberculosis H37Rv in subpopulations of human monocyte-derived macrophages (MDMs). In healthy donors, M. tuberculosis H37Rv grew 5.6-fold more rapidly in CD14(hi) MDMs compared with that in CD14(lo)CD16(+) MDMs. Compared with CD14(lo)CD16(+) cells, M. tuberculosis H37Rv-stimulated CD14(hi) monocytes produced more IL-10 and had increased mRNA expression for c-Maf, a transcription factor that upregulates IL-10 gene expression. c-Maf small interfering RNA (siRNA) inhibited IL-10 production and growth of M. tuberculosis in CD14(hi) cells. Compared with CD14(lo)CD16(+) monocytes, M. tuberculosis H37Rv-stimulated CD14(hi) cells had increased expression of 22 genes whose promoters contained a c-Maf binding site, including hyaluronan synthase 1 (HAS1). c-Maf siRNA inhibited HAS1 expression in M. tuberculosis-stimulated CD14(hi) monocytes, and HAS1 siRNA inhibited growth of M. tuberculosis in CD14(hi) MDMs. M. tuberculosis H37Rv upregulated expression of HAS1 protein and its product, hyaluronan, in CD14(hi) MDMs. We conclude that M. tuberculosis grows more rapidly in CD14(hi) than in CD14(lo)CD16(+) MDMs because CD14(hi) cells have increased expression of c-Maf, which increases production of two key factors (hyaluronan and IL-10) that promote growth of M. tuberculosis.


Assuntos
Receptores de Lipopolissacarídeos/biossíntese , Macrófagos/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Proteínas Proto-Oncogênicas c-maf/fisiologia , Diferenciação Celular/imunologia , Células Cultivadas , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/biossíntese , Humanos , Hialuronan Sintases , Ácido Hialurônico/fisiologia , Interleucina-10/biossíntese , Interleucina-10/fisiologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/enzimologia , Monócitos/imunologia , Mycobacterium tuberculosis/patogenicidade , Proteínas Proto-Oncogênicas c-maf/biossíntese , Virulência/imunologia
10.
Infect Immun ; 79(1): 229-37, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974820

RESUMO

Smoking is associated with increased susceptibility to tuberculosis and influenza. However, little information is available on the mechanisms underlying this increased susceptibility. Mice were left unexposed or were exposed to cigarette smoke and then infected with Mycobacterium tuberculosis by aerosol or influenza A by intranasal infection. Some mice were given a DNA vaccine encoding an immunogenic M. tuberculosis protein. Gamma interferon (IFN-γ) production by T cells from the lungs and spleens was measured. Cigarette smoke exposure inhibited the lung T-cell production of IFN-γ during stimulation in vitro with anti-CD3, after vaccination with a construct expressing an immunogenic mycobacterial protein, and during infection with M. tuberculosis and influenza A virus in vivo. Reduced IFN-γ production was mediated through the decreased phosphorylation of transcription factors that positively regulate IFN-γ expression. Cigarette smoke exposure increased the bacterial burden in mice infected with M. tuberculosis and increased weight loss and mortality in mice infected with influenza virus. This study provides the first demonstration that cigarette smoke exposure directly inhibits the pulmonary T-cell response to M. tuberculosis and influenza virus in a physiologically relevant animal model, increasing susceptibility to both pathogens.


Assuntos
Vírus da Influenza A/fisiologia , Pulmão/citologia , Mycobacterium tuberculosis/fisiologia , Nicotiana , Fumaça/efeitos adversos , Linfócitos T/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica/fisiologia , Interferon gama/genética , Interferon gama/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Tuberculose Pulmonar/imunologia
11.
J Mol Med (Berl) ; 89(3): 263-77, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21109991

RESUMO

Expansion of thymic epithelial cysts represents disruption of an organized three-dimensional (3D) thymic epithelial cell (TEC) meshwork, which is crucial for T-lymphocyte development. Although the FoxN1-null mutant develops a rudimentary two-dimensional (2D) cystic thymus, 2D thymic cyst lining resulting from a dGUO culture was reported to be FoxN1-independent; thus, it is unclear whether loss of FoxN1 facilitates cyst formation and whether FoxN1 regulates the morphogenesis and maintenance of the 3D thymic microstructure. Using the loxP-floxed-FoxN1 mouse model, we demonstrated that specific deletion of FoxN1 in keratin (K)-14 promoter-driven TECs induced the loss of 3D thymic medullary structure by producing a large number of morphologic pulmonary alveolar-like 2D epithelial cysts, which increased with age. The cystic lining was positive for differential polarized keratins and had strong claudin-3,4, but reduced MHC-II, expression. However, an increased percentage of claudin-3,4(+) TECs, which are presumptive precursors of UEA-1(+) and Aire(+) mature medullary TECs, failed to promote the development of these mature descendants. Meanwhile, the K14Cre-mediated FoxN1 deletion alone was sufficient to induce a complete hair follicle defect, causing a nude phenotype in the skin, but was not sufficient to cause a complete loss of the thymus. All these changes to occur require deletion of FoxN1 in both prenatal (Cre-recombinase from parents during fertilization) and postnatal (Cre-recombinase from offspring themselves after fertilization) life. These findings provide new insights into FoxN1 regulation of 3D thymic epithelial morphogenesis and maintenance, the distinct impacts of FoxN1 in the K14 epithelial subset of the thymus and skin, and its postnatal requirement.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Morfogênese/fisiologia , Pele/metabolismo , Timo/metabolismo , Animais , Cistos/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Nus , Morfogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Hum Immunol ; 69(8): 475-83, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18588932

RESUMO

CD4+ T cells are believed to play a dominant role in human defenses against Mycobacterium tuberculosis through production of interferon (IFN)-gamma, cytolytic T-cell (CTL) activity, and inhibition of intracellular mycobacterial growth. Most functional studies of CD4+ cells have used bulk T-cells that recognize crude mycobacterial antigens, and the functional capacity of individual human T cells is not well defined. We studied the functional capacity of human CD4+ T-cell clones that recognize a specific mycobacterial peptide. Clone B9 produced high concentrations of IFN-gamma and exhibited potent CTL activity, whereas clone D3 produced IFN-gamma but showed poor CTL activity. The CTL activity of clone B9 was inhibited by SrCl(2) and concanamycin A but not by anti-Fas antibodies. Clone B9 also reduced the mycobacterial burden in dendritic cells by more than 90%, and this antimycobacterial activity was inhibited by SrCl(2) and concanamycin A. We conclude that: (1) individual human peptide-specific CD4+ T-cell clones have differential capacity to produce Th1 cytokines and to lyse M tuberculosis-infected target cells; and (2) both granulysin and perforin contribute to the capacity of human CD4+ T-cells to lyse infected targets and to inhibit intracellular mycobacterial growth.


Assuntos
Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Citotoxicidade Imunológica , Interferon gama/biossíntese , Mycobacterium tuberculosis/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Clonais , Citocinas/biossíntese , Células Dendríticas/microbiologia , Humanos , Interferon gama/imunologia , Macrolídeos/farmacologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fragmentos de Peptídeos/imunologia , Perforina/fisiologia
13.
J Immunol ; 179(6): 3947-57, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17785832

RESUMO

CD8+ T cells are important for immunity to the intracellular bacterial pathogen Chlamydia pneumoniae (Cpn). Recently, we reported that type 1 CD8+ (Tc1) from Cpn-infected B6 mice recognize peptides from multiple Cpn Ags in a classical MHC class Ia-restricted fashion. In this study, we show that Cpn infection also induces nonclassical MHC class Ib-(H2-M3)-restricted CD8+ T cell responses. H2-M3-binding peptides representing the N-terminal formylated sequences from five Cpn Ags sensitized target cells for lysis by cytolytic effectors from the spleens of infected B6 mice. Of these, only peptides fMFFAPL (P1) and fMLYWFL (P4) stimulated IFN-gamma production by infection-primed splenic and pulmonary CD8+ T cells. Studies with Cpn-infected Kb-/-/Db-/- mice confirmed the Tc1 cytokine profile of P1- and P4-specific CD8+ T cells and revealed the capacity of these effectors to exert in vitro H2-M3-restricted lysis of Cpn-infected macrophages and in vivo pulmonary killing of P1- and P4-coated splenocytes. Furthermore, adoptive transfer of P1- and P4-specific CD8+ T cells into naive Kb-/-/Db-/- mice reduced lung Cpn loads following challenge. Finally, we show that in the absence of MHC class Ia-restricted CD8+ T cell responses, CD4+ T cells are largely expendable for the control of Cpn growth, and for the generation, memory maintenance, and secondary expansion of P1- and P4-specific CD8+ T cells. These results suggest that H2-M3-restricted CD8+ T cells contribute to protective immunity against Cpn, and that chlamydial Ags presented by MHC class Ib molecules may represent novel targets for inclusion in anti-Cpn vaccines.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Chlamydophila/prevenção & controle , Chlamydophila pneumoniae/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Celular , Animais , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/microbiologia , Linhagem Celular , Linhagem Celular Tumoral , Infecções por Chlamydophila/imunologia , Chlamydophila pneumoniae/crescimento & desenvolvimento , Testes Imunológicos de Citotoxicidade , Epitopos de Linfócito T/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Líquido Intracelular/imunologia , Líquido Intracelular/metabolismo , Líquido Intracelular/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/imunologia , Peptídeos/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA