Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970544

RESUMO

The primary aim of this study was to investigate volatile constituents for the differentiation of Chinese marinated pork hocks from four local brands, Dahongmen (DHM), Daoxiangcun (DXC), Henghuitong (HHT) and Tianfuhao (TFH). To this end the volatile constituents were evaluated by gas chromatography-mass spectrometry/olfactometry (GC-MS/O), electronic nose (E-nose) and chemometrics. A total of 62 volatile compounds were identified and quantified in all pork hocks, and 24 of them were considered as odour-active compounds because their odour activity values (OAVs) were greater than 1. Hexanal (OAV at 3.6⁻20.3), octanal (OAV at 30.3⁻47.5), nonanal (OAV at 68.6⁻166.3), 1,8-cineole (OAV at 36.4⁻133.3), anethole (OAV at 5.9⁻28.3) and 2-pentylfuran (OAV at 3.5⁻29.7) were the key odour-active compounds contributing to the integral flavour of the marinated pork hocks. According to principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) of GC-MS/O and E-nose data, the results showed that the marinated pork hocks were clearly separated into three groups: DHM, HHT, and DXC-TFH. Nine odour-active compounds, heptanal, nonanal, 3-carene, d-limonene, ß-phellandrene, p-cymene, eugenol, 2-ethylfuran and 2-pentylfuran, were determined to represent potential flavour markers for the discrimination of marinated pork hocks. This study indicated the feasibility of using GC-MS/O coupled with the E-nose method for the differentiation of the volatile profile in different brands of marinated pork hocks.


Assuntos
Nariz Eletrônico , Aromatizantes/análise , Análise de Alimentos/métodos , Conservação de Alimentos , Olfatometria/métodos , Carne Vermelha/análise , Compostos Orgânicos Voláteis/análise , Animais , Suínos
2.
J Chromatogr A ; 1534: 43-54, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29290395

RESUMO

Natural estrogens (estrone: E1, 17ß-estradiol: E2, estriol: E3) and synthetic 17α-ethynylestradiol (EE2) are reported as strong endocrine disruptors even at extremely low concentrations. Therefore, the watch list from the European Commission regarding emerging aquatic pollutants recommended maximum detection limits of 0.035 ng/L for EE2 and 0.4 ng/L for E1 and E2. In this study, a UHPLC-ESI-MS/MS method allowing quantification of E1, E2, E3 and EE2 in aqueous matrices was developed. The analytes were derivatized using pyridine-3-sulfonyl chloride and a broad range of product ions were generated and their specificity was assessed by analyzing both surface and groundwater. At least two product ions for each estrogenic compound were proved to be specific and hence suitable for quantification and confirmation. In complex aqueous matrices, analyte responses were particularly affected by ion suppression. This phenomenon was reduced by optimizing the clean-up and selecting a suitable stationary phase for the chromatographic separation. The limits of quantification assessed in surface water with the optimized method ranged from 0.098 ng/L (EE2) to 2.73 ng/L (E3).


Assuntos
Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental/métodos , Estrogênios/análise , Água Doce/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Água Subterrânea/química , Limite de Detecção
3.
J Sep Sci ; 39(7): 1249-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26829155

RESUMO

The applicability and predictive properties of the linear solvent strength model and two nonlinear retention-time models, i.e., the quadratic model and the Neue model, were assessed for the separation of small molecules (phenol derivatives), peptides, and intact proteins. Retention-time measurements were conducted in isocratic mode and gradient mode applying different gradient times and elution-strength combinations. The quadratic model provided the most accurate retention-factor predictions for small molecules (average absolute prediction error of 1.5%) and peptides separations (with a prediction error of 2.3%). An advantage of the Neue model is that it can provide accurate predictions based on only three gradient scouting runs, making tedious isocratic retention-time measurements obsolete. For peptides, the use of gradient scouting runs in combination with the Neue model resulted in better prediction errors (<2.2%) compared to the use of isocratic runs. The applicability of the quadratic model is limited due to a complex combination of error and exponential functions. For protein separations, only a small elution window could be applied, which is due to the strong effect of the content of organic modifier on retention. Hence, the linear retention-time behavior of intact proteins is well described by the linear solvent strength model. Prediction errors using gradient scouting runs were significantly lower (2.2%) than when using isocratic scouting runs (3.2%).


Assuntos
Cromatografia de Fase Reversa , Peptídeos/isolamento & purificação , Fenóis/isolamento & purificação , Proteínas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Modelos Moleculares , Peso Molecular , Peptídeos/química , Fenóis/química , Proteínas/química , Fatores de Tempo
4.
J Chromatogr A ; 1355: 149-57, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24986072

RESUMO

This contribution relates to the assessment of gradient-elution parameters in capillary liquid chromatography affecting the peak widths in the reversed-phase separation of peptides and intact proteins. Gradient separations were performed using both a poly(sytrene-co-divinylbenzene) monolithic column and a microparticulate fused-core column (silica C18, 2.7µm). The applicability of the conventional linear (LSS) and non-linear solvent-strength model (Neue-Kuss) were investigated to describe the retention behaviour of the compounds as a function of the mobile-phase composition. This was performed by using a wide range of gradient conditions, including different gradient slopes (ß, ranging from 0.05 to 0.65min(-1)) and mobile-phase compositions (Δϕ, i.e. gradient span). Although the LSS-model provided accurate retention time predictions (<1.3% deviation) of scouting runs with more conventional gradient slopes, the prediction of high-speed separations with a high degree of accuracy (<2%) could only be obtained with the non-linear model. The solvent-strength parameters resulting from the use of both models, as well as the retention factors at the moment of elution (ke), further served as input parameters to assess the influence of the gradient slope on the expected peak-compression effects in gradient mode, with a focus on high-speed separations. The importance of the correct model choice was emphasized in terms of compression; while the LSS-model lead to the conclusion of peak broadening rather than peak sharpening, the use of a more accurate non-linear model showed the existence of peak compression effect. The results presented in this manuscript show the occurrence of gradient-related focusing effects, which appear to be more prevalent for extremely fast separations.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Peptídeos/isolamento & purificação , Proteínas/isolamento & purificação , Animais , Cromatografia Líquida de Alta Pressão/instrumentação , Dinâmica não Linear , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA