Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39096004

RESUMO

OBJECTIVES: Hereditary transthyretin (TTR) amyloidosis (ATTRv) is frequently complicated by polyneuropathy (ATTRv-PN) and cardiomyopathy (ATTRv-CM). The long-term efficacy of diflunisal on both polyneuropathy and cardiomyopathy in ATTRv patients, especially those with non-V30M genotypes, has not been fully investigated and compared with that of tafamidis. METHODS: We compared the structural and biochemical characteristics of A97S-TTR complexed with tafamidis with those of diflunisal, and prospectively followed up and compared the progression of polyneuropathy and cardiomyopathy between ATTRv-PN patients taking diflunisal and those taking tafamidis. RESULTS: Both diflunisal and tafamidis effectively bind to the two thyroxine-binding sites at the A97S-TTR dimer-dimer interface and equally and almost sufficiently reduce amyloid fibril formation. Thirty-five ATTRv-PN patients receiving diflunisal and 22 patients receiving tafamidis were enrolled. Compared with no treatment, diflunisal treatment significantly delayed the transition of FAP Stage 1 to 2 and Stage 2 to 3 and decreased the deterioration in parameters of the ulnar nerve conduction study (NCS). The progression of FAP stage or NCS parameters did not differ between patients treated with diflunisal and those treated with tafamidis. Both diflunisal and tafamidis treatments significantly decreased radiotracer uptake on 99mTc-PYP SPECT and stabilized cardiac wall thickness and blood pro-B-type natriuretic peptide levels. No significant adverse events occurred during diflunisal or tafamidis treatment. INTERPRETATIONS: The binding patterns of both tafamidis and diflunisal to A97S-TTR closely resembled those observed in the wild type. Diflunisal can effectively delay the progression of polyneuropathy and cardiomyopathy with similar efficacy to tafamidis and may become a cost-effective alternative treatment for late-onset ATTRv-PN.

2.
Sci Rep ; 14(1): 6195, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486098

RESUMO

Increasing evidence suggests that gut microbiota alterations are related to development and phenotypes of many neuropsychiatric diseases. Here, we evaluated the fecal microbiota and its clinical correlates in patients with hereditary transthyretin amyloidosis (ATTRv) and polyneuropathy. Fecal microbiota from 38 ATTRv patients and 39 age-matched controls was analyzed by sequencing 16S V3-V4 ribosomal RNA, and its relationships with clinical characteristics of polyneuropathy and cardiomyopathy were explored. The familial amyloidotic polyneuropathy stage was stage I, II, and III in 13, 18, and 7 patients. 99mTc-PYP SPECT showed a visual score of 2 in 15 and 3 in 21 patients. The gut microbiota of ATTRv patients showed higher alpha diversity (ASV richness and Shannon effective numbers) and dissimilar beta diversity compared to controls. Relative abundance of microbiota was dominated by Firmicutes and decreased in Bacteroidetes in ATTRv patients than in controls. Patients with more myocardial amyloid deposition were associated with increased alpha diversity, and the abundance of Clostridia was significantly correlated with pathophysiology of polyneuropathy in ATTRv patients. These findings demonstrated alterations in the gut microbiota, especially Firmicutes, in ATTRv. The association between altered microbiota and phenotypes of cardiomyopathy and polyneuropathy might suggest potential contributions of gut microbiota to ATTRv pathogenesis.


Assuntos
Neuropatias Amiloides Familiares , Cardiomiopatias , Microbioma Gastrointestinal , Polineuropatias , Humanos , Firmicutes , RNA Ribossômico 16S/genética
3.
Ann Clin Transl Neurol ; 11(1): 30-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902278

RESUMO

OBJECTIVE: Despite amyloid deposition as a hallmark of hereditary transthyretin amyloidosis (ATTRv) with polyneuropathy, this pathology could not completely account for nerve degeneration. ATTRv patients frequently have vasomotor symptoms, but microangiopathy hypothesis in ATTRv was not systemically clarified. METHODS: This study examined the vascular pathology of sural nerves in ATTRv patients with transthyretin (TTR) mutation of p.Ala117Ser (TTR-A97S), focusing on morphometry and patterns of molecular expression in relation to nerve degeneration. We further applied human microvascular endothelial cell (HMEC-1) culture to examine the direct effect of TTR-A97S protein on endothelial cells. RESULTS: In ATTRv nerves, there was characteristic microangiopathy compared to controls: increased vessel wall thickness and decreased luminal area; both were correlated with the reduction of myelinated fiber density. Among the components of vascular wall, the area of collagen IV in ATTRv nerves was larger than that of controls. This finding was validated in a cell model of HMEC-1 culture in which the expression of collagen IV was upregulated after exposure to TTR-A97S. Apoptosis contributed to the endothelial cell degeneration of microvasculatures in ATTRv endoneurium. ATTRv showed prothrombotic status with intravascular fibrin deposition, which was correlated with (1) increased tissue factor and coagulation factor XIIIA and (2) reduced tissue plasminogen activator. This cascade led to intravascular thrombin deposition, which was colocalized with upregulated p-selectin and thrombomodulin, accompanied by complement deposition and macrophages infiltration, indicating thromboinflammation in ATTRv. INTERPRETATION: Microangiopathy with thromboinflammation is characteristic of advanced-stage ATTRv nerves, which provides an add-on mechanism and therapeutic target for nerve degeneration.


Assuntos
Neuropatias Amiloides Familiares , Trombose , Ativador de Plasminogênio Tecidual , Humanos , Tromboinflamação , Células Endoteliais , Inflamação , Degeneração Neural , Colágeno
4.
Vaccine ; 41(21): 3337-3346, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37085450

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have constituted a public health issue with drastic mortality higher than 34%, necessitating the development of an effective vaccine. During MERS-CoV infection, the trimeric spike protein on the viral envelope is primarily responsible for attachment to host cellular receptor, dipeptidyl peptidase 4 (DPP4). With the goal of generating a protein-based prophylactic, we designed a subunit vaccine comprising the recombinant S1 protein with a trimerization motif (S1-Fd) and examined its immunogenicity and protective immune responses in combination with various adjuvants. We found that sera from immunized wild-type and human DPP4 transgenic mice contained S1-specific antibodies that can neutralize MERS-CoV infection in susceptible cells. Vaccination with S1-Fd protein in combination with a saponin-based QS-21 adjuvant provided long-term humoral as well as cellular immunity in mice. Our findings highlight the significance of the trimeric S1 protein in the development of MERS-CoV vaccines and offer a suitable adjuvant, QS-21, to induce robust and prolonged memory T cell response.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Animais , Camundongos , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Dipeptidil Peptidase 4 , Imunidade Celular , Camundongos Transgênicos , Adjuvantes Imunológicos , Proteínas Recombinantes , Vacinas de Subunidades Antigênicas , Glicoproteína da Espícula de Coronavírus
5.
Protein Sci ; 32(4): e4610, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851846

RESUMO

Transthyretin (TTR)-related amyloidosis (ATTR) is a syndrome of diseases characterized by the extracellular deposition of fibrillar materials containing TTR variants. Ala97Ser (A97S) is the major mutation reported in Taiwanese ATTR patients. Here, we combine atomic resolution structural information together with the biochemical data to demonstrate that substitution of polar Ser for a small hydrophobic side chain of Ala at residue 97 of TTR largely influences the local packing density of the FG-loop, thus leading to the conformational instability of native tetramer, the increased monomeric species, and thus the enhanced amyloidogenicity of apo-A97S. Based on calorimetric studies, the tetramer destabilization of A97S can be substantially altered by interacting with native stabilizers via similarly energetic patterns compared to that of wild-type (WT) TTR; however, stabilizer binding partially rearranges the networks of hydrogen bonding in TTR variants while FG-loops of tetrameric A97S still remain relatively flexible. Moreover, TTR in complexed with holo-retinol binding protein 4 is slightly influenced by the structural and dynamic changes of FG-loop caused by A97S substitution with an approximately five-fold difference in binding affinity. Collectively, our findings suggest that the amyloidogenic A97S mutation destabilizes TTR by increasing the flexibility of the FG-loop in the monomer, thus modulating the rate of amyloid fibrillization.


Assuntos
Amiloide , Pré-Albumina , Humanos , Amiloide/química , Proteínas Amiloidogênicas/genética , Calorimetria , Mutação , Pré-Albumina/genética , Pré-Albumina/química
6.
Proc Natl Acad Sci U S A ; 116(2): 566-574, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587587

RESUMO

We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.


Assuntos
Trifosfato de Adenosina , Metabolismo Energético/genética , Homozigoto , Dinâmica Mitocondrial/genética , Nucleosídeo NM23 Difosfato Quinases , Doenças Neurodegenerativas , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Sobrevivência Celular , Feminino , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia
7.
Nat Commun ; 8(1): 1516, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29138488

RESUMO

Peptidoglycan (PG) is a highly cross-linked, protective mesh-like sacculus that surrounds the bacterial cytoplasmic membrane. Expansion of PG is tightly coupled to growth of a bacterial cell and requires hydrolases to cleave the cross-links for insertion of nascent PG material. In Escherichia coli, a proteolytic system comprising the periplasmic PDZ-protease Prc and the lipoprotein adaptor NlpI contributes to PG enlargement by regulating cellular levels of MepS, a cross-link-specific hydrolase. Here, we demonstrate how NlpI binds Prc to facilitate the degradation of its substrate MepS by structural and mutational analyses. An NlpI homodimer binds two molecules of Prc and forms three-sided MepS-docking cradles using its tetratricopeptide repeats. Prc forms a monomeric bowl-shaped structure with a lid-like PDZ domain connected by a substrate-sensing hinge that recognizes the bound C terminus of the substrate. In summary, our study reveals mechanistic details of protein degradation by the PDZ-protease Prc bound to its cognate adaptor protein.


Assuntos
Endopeptidases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Endopeptidases/química , Endopeptidases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lipoproteínas/química , Lipoproteínas/genética , Simulação de Acoplamento Molecular , Mutação , Domínios PDZ , Peptidoglicano/química , Peptidoglicano/metabolismo , Periplasma/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteólise , Homologia de Sequência de Aminoácidos
8.
Sci Rep ; 6: 37367, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869178

RESUMO

Helicobacter pylori infection is associated with the development of gastric and duodenal ulcers as well as gastric cancer. GroES of H. pylori (HpGroES) was previously identified as a gastric cancer-associated virulence factor. Our group showed that HpGroES induces interleukin-8 (IL-8) cytokine release via a Toll-like receptor 4 (TLR4)-dependent mechanism and domain B of the protein is crucial for interactions with TLR4. In the present study, we investigated the importance of the histidine residues in domain B. To this end, a series of point mutants were expressed in Escherichia coli, and the corresponding proteins purified. Interestingly, H96, H104 and H115 were not essential, whereas H100, H102, H108, H113 and H118 were crucial for IL-8 production and TLR4 interactions in KATO-III cells. These residues were involved in nickel binding. Four of five residues, H102, H108, H113 and H118 induced certain conformation changes in extended domain B structure, which is essential for interactions with TLR4 and consequent IL-8 production. We conclude that interactions of nickel ions with histidine residues in domain B help to maintain the conformation of the C-terminal region to conserve the integrity of the HpGroES structure and modulate IL-8 release.


Assuntos
Chaperonina 10/química , Helicobacter pylori/fisiologia , Interleucina-8/biossíntese , Receptor 4 Toll-Like/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Chaperonina 10/metabolismo , Sequência Conservada , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptor 4 Toll-Like/metabolismo
9.
Cancer Res ; 76(20): 6043-6053, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27569210

RESUMO

SMYD3 methyltransferase is nearly undetectable in normal human tissues but highly expressed in several cancers, including breast cancer, although its contributions to pathogenesis in this setting are unclear. Here we report that histone H2A.Z.1 is a substrate of SMYD3 that supports malignancy. SMYD3-mediated dimethylation of H2A.Z.1 at lysine 101 (H2A.Z.1K101me2) increased stability by preventing binding to the removal chaperone ANP32E and facilitating its interaction with histone H3. Moreover, a microarray analysis identified cyclin A1 as a target coregulated by SMYD3 and H2A.Z.1K101me2. The colocalization of SMYD3 and H2A.Z.1K101me2 at the promoter of cyclin A1 activated its expression and G1-S progression. Enforced expression of cyclin A1 in cells containing mutant H2A.Z.1 rescued tumor formation in a mouse model. Our findings suggest that SMYD3-mediated H2A.Z.1K101 dimethylation activates cyclin A1 expression and contributes to driving the proliferation of breast cancer cells. Cancer Res; 76(20); 6043-53. ©2016 AACR.


Assuntos
Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Animais , Linhagem Celular Tumoral , Ciclina A1/genética , Feminino , Humanos , Metilação , Camundongos
10.
Proc Natl Acad Sci U S A ; 112(36): 11229-34, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305948

RESUMO

Polyamines are organic polycations essential for cell growth and differentiation; their aberrant accumulation is often associated with diseases, including many types of cancer. To maintain polyamine homeostasis, the catalytic activity and protein abundance of ornithine decarboxylase (ODC), the committed enzyme for polyamine biosynthesis, are reciprocally controlled by the regulatory proteins antizyme isoform 1 (Az1) and antizyme inhibitor (AzIN). Az1 suppresses polyamine production by inhibiting the assembly of the functional ODC homodimer and, most uniquely, by targeting ODC for ubiquitin-independent proteolytic destruction by the 26S proteasome. In contrast, AzIN positively regulates polyamine levels by competing with ODC for Az1 binding. The structural basis of the Az1-mediated regulation of polyamine homeostasis has remained elusive. Here we report crystal structures of human Az1 complexed with either ODC or AzIN. Structural analysis revealed that Az1 sterically blocks ODC homodimerization. Moreover, Az1 binding triggers ODC degradation by inducing the exposure of a cryptic proteasome-interacting surface of ODC, which illustrates how a substrate protein may be primed upon association with Az1 for ubiquitin-independent proteasome recognition. Dynamic and functional analyses further indicated that the Az1-induced binding and degradation of ODC by proteasome can be decoupled, with the intrinsically disordered C-terminal tail fragment of ODC being required only for degradation but not binding. Finally, the AzIN-Az1 structure suggests how AzIN may effectively compete with ODC for Az1 to restore polyamine production. Taken together, our findings offer structural insights into the Az-mediated regulation of polyamine homeostasis and proteasomal degradation.


Assuntos
Proteínas de Transporte/química , Homeostase , Ornitina Descarboxilase/química , Poliaminas/química , Proteínas/química , Sequência de Aminoácidos , Biocatálise , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteólise , Homologia de Sequência de Aminoácidos
11.
Methods Mol Biol ; 831: 133-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22167672

RESUMO

Over the recent years, there has been increased interest in applying NMR spectroscopy for the characterization of proteins and protein complexes of large molecular weight. The combination of multidimensional NMR, novel pulse sequences allowing for the selection of slowly relaxing coherence pathways, and the development of a range of labeling techniques has enabled high-resolution NMR analyses of supramolecular systems of even megadalton size. Here, we describe how NMR can be used to obtain structural information in large systems by using as an example the recent structure determination of SecA ATPase (204 kDa) in complex with a signal peptide.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Complexos Multiproteicos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Marcação por Isótopo/métodos , Proteínas de Membrana Transportadoras/metabolismo , Metilação , Conformação Proteica , Sinais Direcionadores de Proteínas , Canais de Translocação SEC , Proteínas SecA
12.
Nat Chem Biol ; 7(1): 51-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21131971

RESUMO

Proline switches, controlled by cis-trans isomerization, have emerged as a particularly effective regulatory mechanism in a wide range of biological processes. Here we report the structures of both the cis and trans conformers of a proline switch in the Crk signaling protein. Proline isomerization toggles Crk between two conformations: an autoinhibitory conformation, stabilized by the intramolecular association of two tandem SH3 domains in the cis form, and an uninhibited, activated conformation promoted by the trans form. In addition to acting as a structural switch, the heterogeneous proline recruits cyclophilin A, which accelerates the interconversion rate between the isomers, thereby regulating the kinetics of Crk activation. The data provide atomic insight into the mechanisms that underpin the functionality of this binary switch and elucidate its remarkable efficiency. The results also reveal new SH3 binding surfaces, highlighting the binding versatility and expanding the noncanonical ligand repertoire of this important signaling domain.


Assuntos
Prolina/química , Proteínas Proto-Oncogênicas c-crk/química , Transdução de Sinais/efeitos dos fármacos , Ciclofilina A/química , Ciclofilina A/metabolismo , Isomerismo , Ligantes , Prolina/farmacologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-crk/genética , Proteínas Proto-Oncogênicas c-crk/metabolismo , Transdução de Sinais/fisiologia , Domínios de Homologia de src/efeitos dos fármacos
13.
Nature ; 462(7271): 368-72, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19924217

RESUMO

Allosteric regulation is used as a very efficient mechanism to control protein activity in most biological processes, including signal transduction, metabolism, catalysis and gene regulation. Allosteric proteins can exist in several conformational states with distinct binding or enzymatic activity. Effectors are considered to function in a purely structural manner by selectively stabilizing a specific conformational state, thereby regulating protein activity. Here we show that allosteric proteins can be regulated predominantly by changes in their structural dynamics. We have used NMR spectroscopy and isothermal titration calorimetry to characterize cyclic AMP (cAMP) binding to the catabolite activator protein (CAP), a transcriptional activator that has been a prototype for understanding effector-mediated allosteric control of protein activity. cAMP switches CAP from the 'off' state (inactive), which binds DNA weakly and non-specifically, to the 'on' state (active), which binds DNA strongly and specifically. In contrast, cAMP binding to a single CAP mutant, CAP-S62F, fails to elicit the active conformation; yet, cAMP binding to CAP-S62F strongly activates the protein for DNA binding. NMR and thermodynamic analyses show that despite the fact that CAP-S62F-cAMP(2) adopts the inactive conformation, its strong binding to DNA is driven by a large conformational entropy originating in enhanced protein motions induced by DNA binding. The results provide strong evidence that changes in protein motions may activate allosteric proteins that are otherwise structurally inactive.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , Metabolismo Energético , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , AMP Cíclico/química , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/química , DNA/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
14.
Proc Natl Acad Sci U S A ; 106(17): 6927-32, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19359484

RESUMO

The cAMP-mediated allosteric transition in the catabolite activator protein (CAP; also known as the cAMP receptor protein, CRP) is a textbook example of modulation of DNA-binding activity by small-molecule binding. Here we report the structure of CAP in the absence of cAMP, which, together with structures of CAP in the presence of cAMP, defines atomic details of the cAMP-mediated allosteric transition. The structural changes, and their relationship to cAMP binding and DNA binding, are remarkably clear and simple. Binding of cAMP results in a coil-to-helix transition that extends the coiled-coil dimerization interface of CAP by 3 turns of helix and concomitantly causes rotation, by approximately 60 degrees , and translation, by approximately 7 A, of the DNA-binding domains (DBDs) of CAP, positioning the recognition helices in the DBDs in the correct orientation to interact with DNA. The allosteric transition is stabilized further by expulsion of an aromatic residue from the cAMP-binding pocket upon cAMP binding. The results define the structural mechanisms that underlie allosteric control of this prototypic transcriptional regulatory factor and provide an illustrative example of how effector-mediated structural changes can control the activity of regulatory proteins.


Assuntos
Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/metabolismo , Regulação Alostérica , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , AMP Cíclico/química , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , GMP Cíclico/química , GMP Cíclico/metabolismo , DNA/química , DNA/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fenótipo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA