Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(8): 4234-4256, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38348998

RESUMO

Mammalian promoters consist of multifarious elements, which make them unique and support the selection of the proper transcript variants required under diverse conditions in distinct cell types. However, their direct DNA-transcription factor (TF) interactions are mostly unidentified. Murine bone marrow-derived macrophages (BMDMs) are a widely used model for studying gene expression regulation. Thus, this model serves as a rich source of various next-generation sequencing data sets, including a large number of TF cistromes. By processing and integrating the available cistromic, epigenomic and transcriptomic data from BMDMs, we characterized the macrophage-specific direct DNA-TF interactions, with a particular emphasis on those specific for promoters. Whilst active promoters are enriched for certain types of typically methylatable elements, more than half of them contain non-methylatable and prototypically promoter-distal elements. In addition, circa 14% of promoters-including that of Csf1r-are composed exclusively of 'distal' elements that provide cell type-specific gene regulation by specialized TFs. Similar to CG-rich promoters, these also contain methylatable CG sites that are demethylated in a significant portion and show high polymerase activity. We conclude that this unusual class of promoters regulates cell type-specific gene expression in macrophages, and such a mechanism might exist in other cell types too.


Assuntos
Linhagem da Célula , Regulação da Expressão Gênica , Macrófagos , Regiões Promotoras Genéticas , Fatores de Transcrição , Animais , Camundongos , Metilação de DNA , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Front Cell Dev Biol ; 11: 1242481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635874

RESUMO

Intra-thymic T cell development is coordinated by the regulatory actions of SATB1 genome organizer. In this report, we show that SATB1 is involved in the regulation of transcription and splicing, both of which displayed deregulation in Satb1 knockout murine thymocytes. More importantly, we characterized a novel SATB1 protein isoform and described its distinct biophysical behavior, implicating potential functional differences compared to the commonly studied isoform. SATB1 utilized its prion-like domains to transition through liquid-like states to aggregated structures. This behavior was dependent on protein concentration as well as phosphorylation and interaction with nuclear RNA. Notably, the long SATB1 isoform was more prone to aggregate following phase separation. Thus, the tight regulation of SATB1 isoforms expression levels alongside with protein post-translational modifications, are imperative for SATB1's mode of action in T cell development. Our data indicate that deregulation of these processes may also be linked to disorders such as cancer.

3.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34846534

RESUMO

Muscle regeneration is the result of the concerted action of multiple cell types driven by the temporarily controlled phenotype switches of infiltrating monocyte-derived macrophages. Pro-inflammatory macrophages transition into a phenotype that drives tissue repair through the production of effectors such as growth factors. This orchestrated sequence of regenerative inflammatory events, which we termed regeneration-promoting program (RPP), is essential for proper repair. However, it is not well understood how specialized repair-macrophage identity develops in the RPP at the transcriptional level and how induced macrophage-derived factors coordinate tissue repair. Gene expression kinetics-based clustering of blood circulating Ly6Chigh, infiltrating inflammatory Ly6Chigh, and reparative Ly6Clow macrophages, isolated from injured muscle, identified the TGF-ß superfamily member, GDF-15, as a component of the RPP. Myeloid GDF-15 is required for proper muscle regeneration following acute sterile injury, as revealed by gain- and loss-of-function studies. Mechanistically, GDF-15 acts both on proliferating myoblasts and on muscle-infiltrating myeloid cells. Epigenomic analyses of upstream regulators of Gdf15 expression identified that it is under the control of nuclear receptors RXR/PPARγ. Finally, immune single-cell RNA-seq profiling revealed that Gdf15 is coexpressed with other known muscle regeneration-associated growth factors, and their expression is limited to a unique subpopulation of repair-type macrophages (growth factor-expressing macrophages [GFEMs]).


Assuntos
Perfilação da Expressão Gênica/métodos , Fator 15 de Diferenciação de Crescimento/genética , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Macrófagos/metabolismo , Regeneração/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Fator 15 de Diferenciação de Crescimento/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Musculares/metabolismo , Músculos/lesões , Músculos/metabolismo , Músculos/fisiopatologia , Células Mieloides/metabolismo , RNA-Seq/métodos
4.
Genes Dev ; 34(21-22): 1474-1492, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060136

RESUMO

Macrophages polarize into functionally distinct subtypes while responding to microenvironmental cues. The identity of proximal transcription factors (TFs) downstream from the polarization signals are known, but their activity is typically transient, failing to explain the long-term, stable epigenomic programs developed. Here, we mapped the early and late epigenomic changes of interleukin-4 (IL-4)-induced alternative macrophage polarization. We identified the TF, early growth response 2 (EGR2), bridging the early transient and late stable gene expression program of polarization. EGR2 is a direct target of IL-4-activated STAT6, having broad action indispensable for 77% of the induced gene signature of alternative polarization, including its autoregulation and a robust, downstream TF cascade involving PPARG. Mechanistically, EGR2 binding results in chromatin opening and the recruitment of chromatin remodelers and RNA polymerase II. Egr2 induction is evolutionarily conserved during alternative polarization of mouse and human macrophages. In the context of tissue resident macrophages, Egr2 expression is most prominent in the lung of a variety of species. Thus, EGR2 is an example of an essential and evolutionarily conserved broad acting factor, linking transient polarization signals to stable epigenomic and transcriptional changes in macrophages.


Assuntos
Polaridade Celular/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Epigênese Genética/genética , Macrófagos/citologia , Fator de Transcrição STAT6/metabolismo , Ativação Transcricional/genética , Animais , Mapeamento Cromossômico , Sequência Conservada , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Interleucina-4/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Domínios e Motivos de Interação entre Proteínas/genética , Fator de Transcrição STAT6/genética , Transcriptoma/genética
5.
J Immunol ; 203(6): 1532-1547, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31405954

RESUMO

The infiltration and subsequent in situ subtype specification of monocytes to effector/inflammatory and repair macrophages is indispensable for tissue repair upon acute sterile injury. However, the chromatin-level mediators and regulatory events controlling this highly dynamic macrophage phenotype switch are not known. In this study, we used a murine acute muscle injury model to assess global chromatin accessibility and gene expression dynamics in infiltrating macrophages during sterile physiological inflammation and tissue regeneration. We identified a heme-binding transcriptional repressor, BACH1, as a novel regulator of this process. Bach1 knockout mice displayed impaired muscle regeneration, altered dynamics of the macrophage phenotype transition, and transcriptional deregulation of key inflammatory and repair-related genes. We also found that BACH1 directly binds to and regulates distal regulatory elements of these genes, suggesting a novel role for BACH1 in controlling a broad spectrum of the repair response genes in macrophages upon injury. Inactivation of heme oxygenase-1 (Hmox1), one of the most stringently deregulated genes in the Bach1 knockout in macrophages, impairs muscle regeneration by changing the dynamics of the macrophage phenotype switch. Collectively, our data suggest the existence of a heme-BACH1--HMOX1 regulatory axis, that controls the phenotype and function of the infiltrating myeloid cells upon tissue damage, shaping the overall tissue repair kinetics.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Animais , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transcrição Gênica/fisiologia
6.
Immunity ; 49(4): 615-626.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332629

RESUMO

Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization.


Assuntos
Epigênese Genética/imunologia , Epigenômica/métodos , Regulação da Expressão Gênica/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , PPAR gama/imunologia , Animais , Linhagem Celular , Células Cultivadas , Interleucina-4/imunologia , Interleucina-4/farmacologia , Ligantes , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , PPAR gama/genética , PPAR gama/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(40): 10725-10730, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923935

RESUMO

Retinoid X receptor (RXR) regulates several key functions in myeloid cells, including inflammatory responses, phagocytosis, chemokine secretion, and proangiogenic activity. Its importance, however, in tumor-associated myeloid cells is unknown. In this study, we demonstrate that deletion of RXR in myeloid cells enhances lung metastasis formation while not affecting primary tumor growth. We show that RXR deficiency leads to transcriptomic changes in the lung myeloid compartment characterized by increased expression of prometastatic genes, including important determinants of premetastatic niche formation. Accordingly, RXR-deficient myeloid cells are more efficient in promoting cancer cell migration and invasion. Our results suggest that the repressive activity of RXR on prometastatic genes is mediated primarily through direct DNA binding of the receptor along with nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors and is largely unresponsive to ligand activation. In addition, we found that expression and transcriptional activity of RXRα is down-modulated in peripheral blood mononuclear cells of patients with lung cancer, particularly in advanced and metastatic disease. Overall, our results identify RXR as a regulator in the myeloid cell-assisted metastatic process and establish lipid-sensing nuclear receptors in the microenvironmental regulation of tumor progression.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Células Mieloides/patologia , Receptores X de Retinoides/fisiologia , Transcrição Gênica , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Células Cultivadas , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Ligantes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA