Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(754): eadi6887, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959328

RESUMO

Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant Staphylococcus aureus (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm. These results demonstrate essential roles for PI3Kγ in inflammatory lung disease and support the potential use of PI3Kγ inhibitors to suppress inflammation in severe infectious diseases.


Assuntos
COVID-19 , Classe Ib de Fosfatidilinositol 3-Quinase , Inflamação , SARS-CoV-2 , COVID-19/patologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Animais , Inflamação/patologia , Humanos , Tratamento Farmacológico da COVID-19 , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Pulmão/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Permeabilidade Capilar/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia
2.
Gut Microbes ; 16(1): 2297897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189373

RESUMO

Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.


Assuntos
Criptosporidiose , Cryptosporidium , Microbioma Gastrointestinal , Rotavirus , Lactente , Humanos , Interferon lambda , Células Epiteliais , Zea mays
3.
Antimicrob Agents Chemother ; 67(4): e0142522, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920244

RESUMO

Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.


Assuntos
Antineoplásicos , Antiprotozoários , Criptosporidiose , Cryptosporidium parvum , Animais , Bovinos , Camundongos , Ratos , Criptosporidiose/tratamento farmacológico , Antiprotozoários/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Oocistos
4.
Infect Immun ; 86(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150259

RESUMO

The symptoms of Clostridium difficile infection (CDI) are attributed largely to two C. difficile toxins, TcdA and TcdB. Significant efforts have been devoted to developing vaccines targeting both toxins through parenteral immunization routes. However, C. difficile is an enteric pathogen, and mucosal/oral immunization would be particularly useful to protect the host against CDI, considering that the gut is the main site of disease onset and progression. Moreover, vaccines directed only against toxins do not target the cells and spores that transmit the disease. Previously, we constructed a chimeric vaccine candidate, mTcd138, comprised of the glucosyltransferase and cysteine proteinase domains of TcdB and the receptor binding domain of TcdA. In this study, to develop an oral vaccine that can target both C. difficile toxins and colonization/adhesion factors, we expressed mTcd138 in a nontoxigenic C. difficile (NTCD) strain, resulting in strain NTCD_mTcd138. Oral immunization with spores of NTCD_mTcd138 provided mice full protection against infection with a hypervirulent C. difficile strain, UK6 (ribotype 027). The protective strength and efficacy of NTCD_mTcd138 were further evaluated in the acute CDI hamster model. Oral immunization with spores of NTCD_mTcd138 also provided hamsters significant protection against infection with 2 × 104 UK6 spores, a dose 200-fold higher than the lethal dose of UK6 in hamsters. These results imply that the genetically modified, nontoxigenic C. difficile strain expressing mTcd138 may represent a novel mucosal vaccine candidate against CDI.


Assuntos
Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/prevenção & controle , Enterotoxinas/imunologia , Administração Oral , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Vacinas Bacterianas/genética , Clostridioides difficile/genética , Infecções por Clostridium/imunologia , Cricetinae , Modelos Animais de Doenças , Enterotoxinas/genética , Camundongos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
5.
Parasit Vectors ; 11(1): 176, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29530089

RESUMO

BACKGROUND: Human cryptosporidiosis is caused primarily by two species of apicomplexan protozoa, Cryptosporidium parvum and C. hominis. In cultured cell monolayers, the parasite undergoes two generations of asexual multiplication (merogony). However, the proportion of parasites completing the life-cycle is low and insufficient to sustain continuous propagation. Due to the intracellular location of meronts and later life-cycle stages, oocyst and sporozoites are the only forms of the parasite that can readily be isolated. RESULTS: Research on the replicating forms of Cryptosporidium parasites and their interaction with the host cell remains challenging. Based on an RNA-Seq analysis of monolayers of pig epithelial cells infected with C. parvum, here we report on the impact of merogony on the host's gene regulation. Analysis of the transcriptome of infected and uninfected monolayers demonstrates a significant impact of the infection on host cell gene expression. A total of 813 genes were differentially expressed. Functional terms significantly altered in response to infection include phosphoprotein, RNA binding and acetylation. Upregulation of cell cycle pathways indicates an increase in mitosis. Notably absent from differentially enriched functional categories are stress- and apoptosis-related functions. The comparison of the combined host-parasite transcriptome reveals that C. parvum gene expression is less diverse than the host cell transcriptome and is highly enriched for genes encoding ribosomal functions, such as ribosomal proteins. CONCLUSIONS: These results indicate that C. parvum infection significantly changes host biological functions and provide new insight into gene functions driving early C. parvum intracellular development.


Assuntos
Cryptosporidium parvum/genética , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Jejuno/parasitologia , Animais , Apoptose/genética , Bovinos , Linhagem Celular , Células Cultivadas , Criptosporidiose/genética , Criptosporidiose/parasitologia , Células Epiteliais/parasitologia , Fezes/parasitologia , Regulação da Expressão Gênica , Jejuno/citologia , Estágios do Ciclo de Vida/genética , Mitose/genética , Oocistos/genética , RNA de Protozoário/química , RNA de Protozoário/genética , Proteínas Ribossômicas/genética , Análise de Sequência de RNA , Esporozoítos , Suínos/genética
6.
Clin Vaccine Immunol ; 23(9): 774-84, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27413067

RESUMO

Clostridium difficile infection (CDI), a leading cause of nosocomial infection, is a serious disease in North America, Europe, and Asia. CDI varies greatly from asymptomatic carriage to life-threatening diarrhea, toxic megacolon, and toxemia. The incidence of community-acquired infection has increased due to the emergence of hypervirulent antibiotic-resistant strains. These new strains contribute to the frequent occurrence of disease relapse, complicating treatment, increasing hospital stays, and increasing morbidity and mortality among patients. Therefore, it is critical to develop new therapeutic approaches that bypass the development of antimicrobial resistance and avoid disruption of gut microflora. Here, we describe the construction of a single heteromultimeric VHH-based neutralizing agent (VNA) that targets the two primary virulence factors of Clostridium difficile, toxins A (TcdA) and B (TcdB). Designated VNA2-Tcd, this agent has subnanomolar toxin neutralization potencies for both C. difficile toxins in cell assays. When given systemically by parenteral administration, VNA2-Tcd protected against CDI in gnotobiotic piglets and mice and to a lesser extent in hamsters. Protection from CDI was also observed in gnotobiotic piglets treated by gene therapy with an adenovirus that promoted the expression of VNA2-Tcd.


Assuntos
Anticorpos Antibacterianos/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Antitoxinas/uso terapêutico , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Adenoviridae/genética , Animais , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Modelos Animais de Doenças , Portadores de Fármacos , Avaliação Pré-Clínica de Medicamentos , Enterotoxinas/antagonistas & inibidores , Terapia Genética/métodos , Mesocricetus , Camundongos Endogâmicos C57BL , Suínos , Resultado do Tratamento
7.
Hum Vaccin Immunother ; 11(9): 2215-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26036797

RESUMO

Clostridium difficile is the major cause of hospital-acquired infectious diarrhea and colitis in developed countries. The pathogenicity of C. difficile is mainly mediated by the release of 2 large potent exotoxins, toxin A (TcdA) and toxin B (TcdB), both of which require neutralization to prevent disease occurrence. We have generated a novel chimeric protein, designated mTcd138, comprised of the glucosyltransferase and cysteine proteinase domains of TcdB and the receptor binding domain of TcdA and expressed it in Bacillus megaterium. To ensure that mTcd138 is atoxic, 2 point mutations were introduced to the glucosyltransferase domain of TcdB, which essentially eliminates toxicity of mTcd138. Parenteral immunizations of mice and hamsters with mTcd138 induced protective antibodies to both toxins and provided protection against infection with the hyper-virulent C. difficile strain UK6.


Assuntos
Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/prevenção & controle , Enterotoxinas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Infecções por Clostridium/imunologia , Cisteína Proteases/genética , Cisteína Proteases/imunologia , Modelos Animais de Doenças , Enterotoxinas/genética , Feminino , Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/imunologia , Mesocricetus , Camundongos Endogâmicos C57BL , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
8.
Infect Immun ; 83(1): 286-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368111

RESUMO

Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.


Assuntos
Adenovírus Humanos/genética , Anticorpos Neutralizantes/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O157/imunologia , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Toxina Shiga I/antagonistas & inibidores , Toxina Shiga II/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/genética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Feminino , Vetores Genéticos , Síndrome Hemolítico-Urêmica/imunologia , Síndrome Hemolítico-Urêmica/microbiologia , Injeções Intramusculares , Camundongos , Toxina Shiga I/imunologia , Toxina Shiga II/imunologia , Análise de Sobrevida , Suínos , Fatores de Tempo
9.
Pathog Dis ; 70(1): 17-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23913680

RESUMO

Dendritic cells (DCs) are the antigen-presenting cells capable of activating naïve T cells. Although CD4+ T cells are crucial for Cryptosporidium parvum clearance, little is known about the role of DCs in the immune response to this parasite. In this study, the interaction between mouse DCs and C. parvum was investigated both in vitro and in vivo. For in vitro experiments, mouse bone marrow-derived dendritic cells (BMDCs) derived from wild-type C57B1/6 or MyD88-/- or C3H/HeJ mice and DC cell line DC2.4 were pulsed with C. parvum. Active invasion of parasites was demonstrated by parasite colocalization with host cell membranes and actin-plaque formation at the site of attachment. DC activation induced by the parasite invasion was demonstrated by upregulation of costimulatory molecules CD40, CD80, and CD86, as well as inflammatory cytokines IL-12, TNF-α, and IL-6. BMDCs derived from MyD88-/- and C3H/HeJ mice failed to produce IL-12 in response to C. parvum, suggesting the importance of TLR-dependent signaling pathway specially presence of a functional TLR4 pathway, for C. parvum-induced cytokine production. In vivo experiments showed that both parasite antigens and live parasites were transported to mice mesenteric lymph nodes. All together, these data suggest that DCs play a key role in host immune responses to C. parvum and pathogenesis of the disease.


Assuntos
Criptosporidiose/imunologia , Cryptosporidium parvum/imunologia , Células Dendríticas/imunologia , Linfonodos/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/parasitologia , Linhagem Celular , Membrana Celular/imunologia , Membrana Celular/parasitologia , Criptosporidiose/parasitologia , Células Dendríticas/parasitologia , Interleucina-12/imunologia , Interleucina-6/imunologia , Linfonodos/parasitologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
10.
Hum Vaccin Immunother ; 10(12): 3522-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25668664

RESUMO

Clostridium difficile (C. difficile) causes over 500,000 infections per year in the US, with an estimated 15,000 deaths and an estimated cost of $1-3 billion. Moreover, a continual rise in the incidence of severe C. difficile infection (CDI) has been observed worldwide. Currently, standard treatment for CDI is the administration of antibiotics. While effective, these treatments do not prevent and may contribute to a disease recurrence rate of 15-35%. Prevention of recurrence is one of the most challenging aspects in the field. A better knowledge of the molecular mechanisms of the disease, the host immune response and identification of key virulence factors of C. difficilenow permits the development of immune-based therapies. Antibodies specific for C. difficile toxins have been shown to effectively treat CDI and prevent disease relapse in animal models and in humans. Vaccination has been recognized as the most cost-effective treatment/prevention for CDI. This review will summarize CDI transmission, epidemiology, major virulent factors and highlights the rational and the development of immune-based approaches against this remerging threat.


Assuntos
Clostridioides difficile/imunologia , Infecções por Clostridium/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Humanos , Imunização Passiva , Imunoglobulinas Intravenosas/uso terapêutico , Imunoterapia
11.
AIDS Res Hum Retroviruses ; 27(9): 989-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21314434

RESUMO

The intestinal immune dysfunction due to loss of mucosal and peripheral CD4(+) T cells in individuals with HIV/AIDS is presumably responsible for the establishment of persistent cryptosporidiosis. Simian immunodeficiency virus (SIV)-infected macaques were used to investigate the phase/timing in SIV infection, which permits a self-limiting Cryptosporidium parvum infection to become persistent in immunodeficient hosts because of significant mucosal immune defects. Two groups of SIV-infected macaques were challenged with C. parvum; one was challenged during the acute SIV infection phase (2 weeks post-SIV infection) and the second was challenged during the chronic SIV phase (CD4 counts 200-500 cells/µl of blood). Samples (fecal, blood, biopsy, and necropsy) were collected at different time points after infection to correlate the progression of disease with the immune status of the animals. All seven SIV-infected macaques challenged during the acute phase of SIV infection became persistently infected and excreted oocysts for 1-4 months. However, four of the six in the chronic SIV phase became infected with cryptosporidiosis, of which one survived 2 weeks and one became naturally infected. Sequential analysis of CD4(+) in blood and intestines of coinfected macaques exhibited pronounced losses of CD4 T cells during the first 2 weeks after SIV infection, followed by transient rebound of CD4 T cells in the gut after C. parvum infection, and then a gradual loss over subsequent months. Persistent cryptosporidiosis was more consistently induced during the acute SIV phase indicating that profound viral damage to gut lymphoid tissue during the acute phase was more conducive, compared with the chronic phase, to establishing persistent cryptosporidiosis than low circulating CD4 T cells.


Assuntos
Criptosporidiose/patologia , Doenças dos Primatas/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Estruturas Animais/parasitologia , Animais , Sangue/parasitologia , Contagem de Linfócito CD4 , Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Cryptosporidium parvum/imunologia , Cryptosporidium parvum/patogenicidade , Modelos Animais de Doenças , Progressão da Doença , Fezes/parasitologia , Macaca mulatta , Doenças dos Primatas/imunologia , Doenças dos Primatas/parasitologia
12.
Microbes Infect ; 13(1): 103-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21087681

RESUMO

Cryptosporidium parvum induces the formation of an actin-dense plaque which is essential for the successful invasion of epithelial cells. Host molecules that are involved in the regulation of this cytoskeleton reorganization are unknown. Here we identified that calcium-dependent thiol protease calpain is critical for regulating parasite-induced actin polymerization. C. parvum invasion induced activation of calpain. Inhibition of calpain activity by overexpression of the endogenous inhibitor calpastatin diminished the formation of the actin-dense plaque and decreased the initial invasion of parasites. Our data indicates a key role of calpain activity of host cell in C. parvum infection via regulating cytoskeleton reorganization.


Assuntos
Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Cryptosporidium parvum , Linhagem Celular Tumoral , Cryptosporidium parvum/fisiologia , Humanos
13.
Genome Biol Evol ; 2: 304-9, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20624735

RESUMO

Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association between parasites and hosts the stronger the parasite relies on its host's physiology for survival and reproduction. However, some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing 30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.


Assuntos
Carbono/metabolismo , Enterocytozoon/genética , Enterocytozoon/metabolismo , Genoma Fúngico , Trifosfato de Adenosina/metabolismo , Enterocytozoon/patogenicidade , Evolução Molecular , Genes Fúngicos , Glicólise/genética , Interações Hospedeiro-Patógeno , Humanos , Redes e Vias Metabólicas/genética , Microsporídios/classificação , Microsporídios/genética , Microsporídios/metabolismo
14.
BMC Immunol ; 11: 16, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20334660

RESUMO

BACKGROUND: Shiga toxin 2 (Stx2), one of two Stx liberated by Stx-producing Escherichia coli, is composed of an A subunit monomer and a B subunit pentamer, and is directly linked with hemolytic uremic syndrome in children. The pentameric B subunit binds to its cell surface receptor Gb3 for toxin internalization, and the A subunit follows intracellular retrograde transport to the cytosol where its RNA N-glycosidase activity (RNA-NGA) shuts down the protein synthesis, and leads to cell death. The present study investigated the ability of 19 Stx2 A subunit-specific human monoclonal antibodies (HuMAbs) to neutralize the RNA-NGA, and the association this neutralizing activity with protection of HeLa cells and mice against Stx2-induced death. RESULTS: The HuMAbs that were stronger inhibitors of RNA-NGA were also better at neutralizing Stx2 mediated HeLa cell death, and those that were weaker inhibitors of RNA-NGA activity were also weaker in protecting HeLa cells. These results suggest that the ability of an A subunit-specific antibody to block the RNA-NGA of the toxin is directly related to its ability to neutralize Stx2-mediated HeLa cell death. However, with the exception of the best RNA-NGA blocking antibodies 5C12 and 2F10, the efficacies of antibody neutralization of RNA-NGA of Stx2 did not correlate with their in vivo protective efficacies. The HuMAb 6C3, which neutralized RNA N-glycosidase activity of Stx2 less effectively than the HuMAbs 6D8 and 6B7, protected 100% of the mice against Stx2 challenge at 50 microg/mouse dose. In contrast, the HuMAbs 6D8 and 6B7, which neutralized RNA N-glycosidase activity of Stx2 more effectively than 6C3, protected 20% and 0% mice at that dose, respectively. CONCLUSIONS: The neutralization efficiency of the RNA-NGA of Stx2 by A subunit-specific antibodies correlate strongly with their abilities to protect HeLa cells against Stx2-mediated toxicity but only the strongest RNA-NGA-neutralizing antibodies correlate very well with both protecting HeLa cells and mice against Stx2 challenge.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Proteínas Inativadoras de Ribossomos/antagonistas & inibidores , Toxina Shiga II/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Western Blotting , Células HeLa , Humanos , Camundongos
15.
J Infect Dis ; 201(6): 903-11, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20136414

RESUMO

BACKGROUND: The lack of a standardized laboratory animal model that mimics key aspects of human shigellosis remains a major obstacle to addressing questions about pathogenesis, screening therapeutics, and evaluation of vaccines. METHODS: We characterized a piglet model for Shigella dysenteriae type 1. RESULTS: Piglets developed acute diarrhea, anorexia, and dehydration, which could often be fatal, with symptom severity depending on age and dose. Bacteria were apparent in the lumen and on the surface epithelium throughout the gut initially, but severe mucosal damage and bacterial cellular invasion were most profound in the colon. Detached necrotic colonocytes were present in the lumen, with inflammatory cells outpouring from damaged mucosa. High levels of interleukin (IL)-8 and IL-12 were followed by high levels of other proinflammatory cytokines. Elevated levels of tumor necrosis factor-alpha, IL-1beta, IL-6, and IL-10 were detected in feces and in gut segments from infected animals. Bacteria were present inside epithelial cells and within colonic lamina propria. In contrast, an isogenic strain lacking Shiga toxin induced similar but milder symptoms, with moderate mucosal damage and lower cytokine levels. CONCLUSION: We conclude that piglets are highly susceptible to shigellosis, providing a useful tool with which to compare vaccine candidates for immunogenicity, reactogenicity, and response to challenge; investigate the role of virulence factors; and test the efficacy of microbial agents.


Assuntos
Modelos Animais de Doenças , Disenteria Bacilar/fisiopatologia , Gastroenterite/microbiologia , Shigella dysenteriae , Suínos , Animais , Estudos de Casos e Controles , Contagem de Colônia Microbiana , Citocinas/análise , Disenteria Bacilar/microbiologia , Eutanásia Animal , Fezes/microbiologia , Gastroenterite/fisiopatologia , Trato Gastrointestinal/microbiologia , Interleucina-12 , Interleucina-8 , Microscopia Eletrônica , Shigella dysenteriae/imunologia
16.
Infect Immun ; 77(6): 2294-303, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19307220

RESUMO

Toxin A (TcdA) and toxin B (TcdB) are major virulence factors of Clostridium difficile. These two toxins intoxicate cultured cells by similar mechanisms, and TcdB generally is more potent than TcdA in cultured cells. The exact reason for this difference is unclear. Here, we report that the cellular effects of TcdA can be substantially enhanced via an opsonizing antibody through Fc gamma receptor I (FcgammaRI)-mediated endocytosis. A TcdA-specific monoclonal antibody, A1H3, was found to significantly enhance the cytotoxicity of TcdA to macrophages and monocytes. The A1H3-dependent enhancement of glucosyltransferase activity, cytoskeleton disruption, and tumor necrosis factor alpha production induced by TcdA was further demonstrated using RAW 264.7 cells. Subsequent experiments indicated that the interaction of FcgammaRI with A1H3 underlays the antibody-dependent enhancement of the cellular effects of TcdA. While blocking FcgammaRII and FcgammaRIII with anti-CD16/32 antibodies did not affect the TcdA-mediated glucosylation of Rac1 in RAW 264.7 cells, presaturation of FcgammaRI with anti-CD64 antibodies in THP1 cells significantly reduced this activity. Incubation of a TcdA-A1H3 immune complex with recombinant mouse CD64 completely abrogated the A1H3-mediated enhancement of the glucosyltransferase activity of TcdA in RAW 264.7 cells. Moreover, expression of FcgammaRI in CHO cells strikingly enhanced the sensitivity of these cells to TcdA complexed with A1H3. We showed that the presence of A1H3 facilitated cell surface recruitment of TcdA, contributing to the antibody-dependent, FcgammaRI-mediated enhancement of TcdA activity. Finally, studies using chlorpromazine and endosomal acidification inhibitors revealed an important role of the endocytic pathway in the A1H3-dependent enhancement of TcdA activity.


Assuntos
Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Clostridioides difficile/imunologia , Endocitose , Enterotoxinas/imunologia , Enterotoxinas/metabolismo , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Glicosilação , Humanos , Macrófagos/imunologia , Camundongos , Neuropeptídeos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
17.
Microb Pathog ; 46(6): 298-305, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19324080

RESUMO

Clostridium difficile causes serious and potentially fatal inflammatory diseases of the colon. Two large protein toxins, TcdA and TcdB, have been clearly implicated in pathogenesis. The goal of this study was to determine whether the glucosyltransferase activity of the toxins is critical for the induction of tumor necrosis factor-alpha (TNF-alpha), an important cytokine mediating both local and systematic inflammatory response. A dose-dependent TNF-alpha secretion was demonstrated in murine macrophage cell line RAW 264.7 after exposure to TcdA or TcdB. TNF-alpha production was blocked by anti-toxin antibodies, indicating that the cytokine-driven response is mediated by the toxins. Both toxins disrupted the cytoskeleton of host cells, while cytoskeleton disruptions using Cytochalasin-D and latrunculin B did not affect TNF-alpha production. The TNF-alpha synthesis was inhibited by reagents that target clathrin-dependent endocytosis or prevent endosomal acidification, suggesting that the endocytosis pathway is necessary for the induction of TNF-alpha. Furthermore, knockout of the enzymatic activity by mutating two key amino acids in the catalytic domain of TcdA abolished its cytokine-inducing activity. Our studies demonstrated a crucial role of the glucosyltransferase activity of C. difficile toxins in the induction of TNF-alpha in macrophages.


Assuntos
Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Clostridioides difficile/enzimologia , Enterocolite Pseudomembranosa/imunologia , Enterotoxinas/imunologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Linhagem Celular Transformada , Clostridioides difficile/genética , Clostridioides difficile/imunologia , Enterocolite Pseudomembranosa/microbiologia , Enterotoxinas/genética , Macrófagos/microbiologia , Camundongos
18.
BMC Microbiol ; 8: 192, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18990232

RESUMO

BACKGROUND: Major Clostridium difficile virulence factors are the exotoxins TcdA and TcdB. Due to the large size and poor stability of the proteins, the active recombinant TcdA and TcdB have been difficult to produce. RESULTS: The toxin genes tcdA and tcdB were amplified by PCR using chromosomal DNA from a toxigenic strain as a template, and cloned into a shuttle vector pHis1522. The sequences of both tcdA and tcdB genes in the vector have been verified by DNA sequencing. The constructs were transformed into B. megaterium protoplasts and the protein expression was controlled under a xylose promoter. The recombinant toxins (rTcdA and rTcdB) were purified from bacterial crude extracts. Approximately 5 - 10 mg of highly purified recombinant toxins were obtained from one liter of bacterial culture. The resulting rTcdA and rTcdB had similar molecular masses to the native toxins, and their biological activities were found to be similar to their native counterparts after an extensive examination. CONCLUSION: We have generated the full length and active recombinant TcdA and TcdB in Bacillus megaterium.


Assuntos
Bacillus megaterium/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/metabolismo , Enterotoxinas/genética , Expressão Gênica , Animais , Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Linhagem Celular , Clonagem Molecular , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Células Epiteliais/efeitos dos fármacos , Humanos , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade
19.
Biochemistry ; 47(21): 5736-45, 2008 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-18457419

RESUMO

The Clostridium botulinum neurotoxin serotype A light chain (BoNT/A-LC) is a Zn(II)-dependent metalloprotease that blocks the release of acetylcholine at the neuromuscular junction by cleaving SNAP-25, one of the SNARE proteins required for exocytosis. Because of the potential for use of the toxin in bioterrorism and the increasingly widespread application of the toxin in the medical field, there is significant interest in the development of small-molecule inhibitors of the metalloprotease. Efforts to design such inhibitors have not benefited from knowledge of how peptides bind to the active site since the enzyme-peptide structures available previously either were not occupied in the vicinity of the catalytic Zn(II) ion or did not represent the product of SNAP-25 substrate cleavage. Herein we report the 1.4 A-resolution X-ray crystal structure of a complex between the BoNT/A-LC and the inhibitory peptide N-Ac-CRATKML, the first structure of the light chain with an inhibitory peptide bound at the catalytic Zn(II) ion. The peptide is bound with the Cys S gamma atom coordinating the metal ion. Surprisingly, the cysteine sulfur is oxidized to the sulfenic acid form. Given the unstable nature of this species in solution, is it likely that oxidation occurs on the enzyme. In addition to the peptide-bound structure, we report two structures of the unliganded light chain with and without the Zn(II) cofactor bound at 1.25 and 1.20 A resolution, respectively. The two structures are nearly identical, confirming that the Zn(II) ion plays a purely catalytic role. Additionally, the structure of the Zn(II)-bound uncomplexed enzyme allows identification of the catalytic water molecule and a second water molecule that occupies the same position as the peptidic oxygen in the tetrahedral intermediate. This observation suggests that the enzyme active site is prearranged to stabilize the tetrahedral intermediate of the protease reaction.


Assuntos
Toxinas Botulínicas Tipo A/química , Acetilcolina/química , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Catálise , Domínio Catalítico , Cisteína/química , Íons , Cinética , Luz , Modelos Moleculares , Conformação Molecular , Oxigênio/química , Peptídeos/química , Conformação Proteica , Ácidos Sulfênicos/química , Zinco/química
20.
J Parasitol ; 93(3): 619-26, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17626354

RESUMO

Cryptosporidium spp., enteropathogens of humans and other animals, are members of the Apicomplexa. In parasites belonging to this phylum, proteases have been shown to play a key role in the invasion of host cells, organelle biogenesis, and intracellular survival. The subtilases constitute a family of serine proteases present in prokaryotes, eukaryotes, and viruses. The C. parvum subtilase gene, CpSUB1, encodes a transcript of 3972 base pairs (bp) and 1324 amino acids. Using homologous polymerase chain reaction primers, a similar gene, ChSUB1, which has 98% (4007 bp/4050 bp) identity to CpSUB1, was found in C. hominis. The alignment of the CpSUB1 and ChSUB1 nucleotide sequences identified primarily silent substitutions, consistent with the absence of diversifying selection. The catalytic domain of CpSUB1 is very similar to that of other Apicomplexa (> 38% amino acid identity and >57% similarity) and to the bacterial subtilisin BPN from B. subtilis (36 and 47%). Transcriptional upregulation during merozoite development was observed in cell culture, and a predicted 76-bp intron located near the 3' end of the open reading frame was confirmed experimentally. Cryptosporidium parvum infection in cell culture was significantly inhibited by subtilisin inhibitor III and other serine protease inhibitors, emphasizing the importance of the parasite's subtilase for intracellular development and the enzyme's potential as a drug target.


Assuntos
Cryptosporidium parvum/enzimologia , Cryptosporidium/enzimologia , Serina Endopeptidases/química , Sequência de Aminoácidos , Animais , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Clonagem Molecular , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/crescimento & desenvolvimento , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/crescimento & desenvolvimento , Vida Livre de Germes , Humanos , Dados de Sequência Molecular , Peso Molecular , Alinhamento de Sequência , Serina Endopeptidases/genética , Inibidores de Serina Proteinase/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA