Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Biochem ; 46(4): e13881, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34346512

RESUMO

The purpose of this study was to investigate the potential side-effects of lead acetate (LA), which is toxic to the nerves, blood and muscles, in the rat brain. The neuroprotective effects of pomegranate juice (PJ) against LA exposure were also observed. The experiment involved 28 male Wistar albino rats aged 12 weeks. These were divided into four groups: Control, PJ, LA and LA+PJ. Stereological techniques were employed to determine hippocampal volume in each rat brain. Biochemical investigations and histopathological examinations were also performed. Analysis demonstrated a significant decrease in hippocampal volume in the LA group compared to the control group (p < .05). The stereology results also indicated that PJ has protective effects when compared with the LA and LA+PJ groups. A significant increase was also determined in malondialdehyde (MDA) levels and glutathione S-transferase (GST) activity in the LA group compared to the control group, in contrast to glutathione (GSH) levels and carboxylesterase (CaE) and acetylcholinesterase (AchE) activities. MDA and GST activity decreased significantly in the LA+PJ group compared to the LA group in contrast to GSH levels and CaE and AchE activities. Histopathological examination revealed a number of degenerative changes in the LA group. Exposure to LA adversely affects the hippocampus on the male rat brain. It might also be suggested that PJ may ameliorate these deleterious effects.


Assuntos
Sucos de Frutas e Vegetais , Chumbo , Síndromes Neurotóxicas , Compostos Organometálicos , Punica granatum , Acetilcolinesterase , Animais , Antioxidantes/farmacologia , Feminino , Glutationa , Chumbo/toxicidade , Masculino , Compostos Organometálicos/toxicidade , Ratos , Ratos Wistar
2.
Environ Sci Pollut Res Int ; 29(17): 25194-25208, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34839436

RESUMO

Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), has strong potential for daily exposure to humans and animals due to its persistence and widespread in the environment, so its effects directly concern public health. Although invertebrates represent important components of aquatic ecosystems and are at significant risk of exposure, there is little information about the biological effects of EDCs in these organisms. Astacus leptodactylus used in this study is one of the most consumed and exported freshwater species in Europe. In this study, the 96-h effect of BPA on A. leptodactylus was examined using various biomarkers. The LC50 value of BPA was determined as 96.45 mg L-1. After 96 h of exposure to BPA, there were increases in superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities and levels of malondialdehyde (MDA), and total oxidant status context (TOSC), and there were decreases in the activity of glutathione reductase (GR), carboxylesterase (CaE), acetylcholinesterase (AChE), Na+/K+ ATPase, Mg2+ ATPase, Ca2+ ATPase, and total ATPase and the total antioxidant context (TAC). From the results of this study, it can be concluded that BPA has significant toxic effects on A. leptodactylus based on the selected biochemical parameters of antioxidant, cholinergic, detoxification, and metabolic systems in crayfish even at low doses. Thus, it can be said that BPA can seriously threaten the aquatic ecosystem and public health.


Assuntos
Astacoidea , Ecossistema , Acetilcolinesterase/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Antioxidantes/metabolismo , Compostos Benzidrílicos , Biomarcadores/metabolismo , Estresse Oxidativo , Fenóis , Superóxido Dismutase/metabolismo
3.
Acta Chim Slov ; 68(3): 521-531, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34897546

RESUMO

Thiamethoxam (Thmx) is a globally used neonicotinoid pesticide contaminated in freshwater ecosystems with residues detected in fishery products. Astacus leptodactylus is a popular freshwater crustacean that is cultivated and exported in many countries. In this study, we investigated the acute toxic effects of Thmx on A. leptodactylus using various biomarkers (acetylcholinesterase, carboxylesterase, glutathione S-transferase, glutathione, superoxide dismutase, glutathione peroxidase, glutathione reductase, and adenosinetriphosphatases). The 96-h LC50 value of Thmx was calculated as 8.95 mg active ingredient L-1. As the dose of Thmx increased, oxidative stress was induced by the inhibition/activation of antioxidant enzymes, while the activities of acetylcholinesterase, carboxylesterase and adenosinetriphosphatases were inhibited. As a result, it can be said that Thmx has highly toxic effects on crayfish, therefore they are under threat in the areas where this pesticide is used.


Assuntos
Acetilcolinesterase/metabolismo , Adenosina Trifosfatases/metabolismo , Biomarcadores/metabolismo , Inseticidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tiametoxam/toxicidade , Animais , Astacoidea , Carboxilesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Environ Toxicol Chem ; 40(10): 2846-2860, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255878

RESUMO

Pesticide exposure is thought to be one of the common reasons for the decline in amphibian populations, a phenomenon that is a major threat to global biodiversity. Although the single effects of pesticides on amphibians have been well studied, the effects of mixtures are not well known. The present study aimed to evaluate the acute toxicity of the insecticide thiacloprid and the fungicide trifloxystrobin on early developmental stages of Xenopus laevis using various biochemical markers (glutathione S-transferase, glutathione reductase, acetylcholinesterase, carboxylesterase, glutathione peroxidase, catalase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, Na+ K+ -adenosine triphosphatase [ATPase], Ca2+ -ATPase, Mg2+ -ATPase, and total ATPase). The median lethal concentrations (LC50s) of thiacloprid and trifloxystrobin were determined to be 3.41 and 0.09 mg a.i. L-1 , respectively. Tadpoles were exposed to the LC50, LC50/2, LC50/10, LC50/20, LC50/50, and LC50/100 of these pesticides. Both pesticides significantly affected (inhibited/activated) the biomarkers even at low concentrations. The pesticides showed a synergistic effect when applied as a mixture and altered the biomarkers more than when applied individually. In conclusion, we can assume that tadpoles are threatened by these pesticides even at environmentally relevant concentrations. Our findings provide important data to guide management of the ecotoxicological effects of these pesticides on nontarget amphibians.  Environ Toxicol Chem 2021;40:2846-2860. © 2021 SETAC.


Assuntos
Praguicidas , Acetatos , Acetilcolinesterase , Adenosina Trifosfatases/farmacologia , Animais , Biomarcadores , Iminas , Larva , Neonicotinoides , Praguicidas/toxicidade , Estrobilurinas , Tiazinas , Xenopus laevis
5.
Cell Mol Biol (Noisy-le-grand) ; 65(5): 3-8, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31304900

RESUMO

Cyclotrichium niveum is an endemic plant for Turkey and it appears to have in vitro antioxidant and acetylcholinesterase inhibition properties. To the best of our knowledge, there has been no study on the in vivo effects of this plant. Therefore, the purpose of this study was to evaluate the effects of C. niveum on lead (Pb)-acetate-induced potential alterations in brain acetylcholinesterase activity, as well as oxidative stress in male rats. The rats were randomly assigned to control, Pb-acetate, C. niveum and Pb-acetate+ C. niveum groups. Pb-acetate was provided in drinking water (500 ppm), and C. niveum was administered via orogastric gavage (4 ml/kg) for 30 days. The acetylcholinesterase activity in the brain significantly decreased only in the Pb-acetate group. The malondialdehyde level significantly increased, and the reduced glutathione activity decreased in the Pb-acetate group. The reduced glutathione and glutathione-S-transferase activities of the C. niveum group were higher than the control group. No Pb was detected on a ppb level in the brain tissue of the control and C. niveum groups, while it was detected in the brains of the rats in the Pb-acetate and Pb-acetate+ C. niveum groups (185+8.98 ppb and 206+56.65 ppb, respectively). The data collected in this study suggested that C. niveum may reduce inhibition of brain AChE activity and oxidative stress against Pb-acetate-induced alterations in the brain of male rats.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Inibidores da Colinesterase/farmacologia , Lamiaceae/química , Fármacos Neuroprotetores/farmacologia , Compostos Organometálicos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Administração Oral , Animais , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Masculino , Malondialdeído/metabolismo , Compostos Organometálicos/efeitos adversos , Ratos , Ratos Wistar , Turquia
6.
Arch Physiol Biochem ; 124(1): 80-87, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28817314

RESUMO

In this study, the effect of geraniol (50 mg/kg for 30 d), a natural antioxidant and repellent/antifeedant monoterpene, in a rat model of lead acetate-induced (500 ppm for 30 d) liver damage was evaluated. Hepatic malondialdehyde increased in the lead acetate group. Reduced glutathione unchanged, but glutathione S-transferase, glutathione reductase, as well as carboxylesterase activities decreased in geraniol, lead acetate and geraniol + lead acetate groups. 8-OhDG immunoreactivity, mononuclear cell infiltrations and hepatic lead concentration were lower in the geraniol + lead acetate group than the lead acetate group. Serum aspartate aminotransferase and alanine aminotransferase activities increased in the Pb acetate group. In conclusion, lead acetate causes oxidative and toxic damage in the liver and this effect can reduce with geraniol treatment. However, we first observed that lead acetate, as well as geraniol, can affect liver carboxylesterase activity.


Assuntos
Carboxilesterase/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Repelentes de Insetos/uso terapêutico , Intoxicação por Chumbo/prevenção & controle , Fígado/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Terpenos/uso terapêutico , Monoterpenos Acíclicos , Animais , Antioxidantes/efeitos adversos , Antioxidantes/uso terapêutico , Biomarcadores/sangue , Biomarcadores/metabolismo , Carboxilesterase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Glutationa/química , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Repelentes de Insetos/efeitos adversos , Intoxicação por Chumbo/metabolismo , Intoxicação por Chumbo/patologia , Intoxicação por Chumbo/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Masculino , Compostos Organometálicos/antagonistas & inibidores , Compostos Organometálicos/toxicidade , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/efeitos adversos , Distribuição Aleatória , Ratos Wistar , Terpenos/efeitos adversos
7.
J Biochem Mol Toxicol ; 31(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28467669

RESUMO

Testis tissue is prone to oxidation because its plasma membrane contains many polyunsaturated fatty acids. Naringenin is a plant-derived natural flavonoid. We investigated the possible ameliorative role of naringenin on the hydrogen peroxide (H2 O2 )-induced testicular damage in Wistar rats. Animals received 12 mg/kg H2 O2 by intraperitoneal injection, and 50 mg/kg naringenin via orogastric gavage for 4 weeks. In the H2 O2 group, the testis malondialdehyde level increased, while the amount of reduced glutathione, glutathione transferase activities, and the testis weight decreased. There were severe testicular damages in the H2 O2 group otherwise their grade were less in the naringenin + H2 O2 group. However, the serum testosterone concentrations decreased in both the H2 O2 and the naringenin + H2 O2 groups. The testicular zinc and calcium levels reduced in the H2 O2 -treated rats. In conclusion, the administration of H2 O2 caused oxidative stress in the testes and naringenin supplementation decreased the H2 O2 -induced effects, except for changes in testosterone levels.


Assuntos
Flavanonas/farmacologia , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Testículo/metabolismo , Animais , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Masculino , Ratos , Ratos Wistar , Testículo/patologia
8.
Chemosphere ; 144: 2024-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595308

RESUMO

In this study, we evaluated the toxic effects of a glyphosate-based herbicide (GBH) and a methidathion-based insecticide (MBI), individually and in combination, on premetamorphic tadpoles of three anuran species: Pelophylax ridibundus, Xenopus laevis, and Bufotes viridis. Based on the determined 96-h LC50 values of each species, the effects of a series of sublethal concentrations of single pesticides and their mixtures after 96-h exposure and also the time-related effects of a high sublethal concentration of each pesticide were evaluated, with determination of changes in selected biomarkers: glutathione S-transferase (GST), glutathione reductase (GR), acetylcholinesterase (AChE), carboxylesterase (CaE), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). Also, the integrated biomarker response (IBR) was used to assess biomarker responses and quantitatively evaluate toxicological effects. Isozyme differences in CaE inhibition were assessed using native page electrophoresis; results showed that GBH to cause structural changes in the enzyme but not CaE inhibition in P. ridibundus. In general, single MBI and pesticide mixture exposures increased GST activity, while single GBH exposures decreased GST activity in exposed tadpoles. The AChE and CaE activities were inhibited after exposure to all single MBI and pesticide mixtures. Also, higher IBR values and GST, GR, AST, and LDH activities were determined for pesticide mixtures compared with single-pesticide exposure. This situation may be indicative of a synergistic interaction between pesticides and a sign of a more stressful condition.


Assuntos
Inibidores da Colinesterase/toxicidade , Glicina/análogos & derivados , Herbicidas/toxicidade , Inseticidas/toxicidade , Compostos Organotiofosforados/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Biomarcadores/metabolismo , Bufonidae , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glicina/toxicidade , L-Lactato Desidrogenase/metabolismo , Larva/efeitos dos fármacos , Larva/enzimologia , Ranidae , Xenopus laevis , Glifosato
9.
Biotechnol J ; 1(2): 203-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16892249

RESUMO

The production of L-asparaginase, an enzyme widely used in cancer chemotherapy, is mainly regulated by carbon catabolite repression and oxygen. This study was carried out to understand how different carbon sources and Vitreoscilla hemoglobin (VHb) affect the production of this enzyme in Pseudomonas aeruginosa and its VHb-expressing recombinant strain (PaJC). Both strains grown with various carbon sources showed a distinct profile of the enzyme activity. Compared to no carbohydrate supplemented medium, glucose caused a slight repression of L-asparaginase in P. aeruginosa, while it stimulated it in the PaJC strain. Glucose, regarded as one of the inhibitory sugars for the production L-asparaginase by other bacteria, was determined to be the favorite carbon source compared to lactose, glycerol and mannitol. Furthermore, contrary to common knowledge of oxygen repression of L-asparaginase in other bacteria, oxygen uptake provided by VHb was determined to even stimulate the L-asparaginase synthesis by P. aeruginosa. This study, for the first time, shows that in P. aeruginosa utilizing a recombinant oxygen uptake system, VHb, L-asparaginase synthesis is stimulated by glucose and other carbohydrate sources compared to the host strain. It is concluded that carbon catabolite and oxygen repression of L-asparaginase in fermentative bacteria is not the case for a respiratory non-fermentative bacterium like P. aeruginosa.


Assuntos
Asparaginase/biossíntese , Proteínas de Bactérias/metabolismo , Técnicas de Cultura de Células/métodos , Melhoramento Genético/métodos , Glucose/metabolismo , Hemoglobinas/metabolismo , Pseudomonas aeruginosa/enzimologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Asparaginase/isolamento & purificação , Asparaginase/uso terapêutico , Proteínas de Bactérias/genética , Hemoglobinas/genética , Engenharia de Proteínas/métodos , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Especificidade da Espécie , Hemoglobinas Truncadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA