Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(6): 3499-3506, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38720562

RESUMO

Reactive oxygen species (ROS) are produced by cellular activities, such as metabolism and immune response, and play important roles in cell signaling and homeostasis. However, overproduced ROS causes irreversible damage to nucleic acids and membrane lipids, supporting genetic mutations and enhancing the effects of aging. Cells defend themselves against ROS using antioxidant systems based on redox-active sulfur and transition metals. Inspired by such biological redox-responsive systems, we developed methionine-containing self-assembling peptides. The Met-containing peptides formed hydrogels that underwent a gel-to-sol phase transition upon oxidation by H2O2, and the sensitivity of the peptides to the oxidant increased as the number of Met residues increased. The peptide containing three Met residues, the largest number of Met residues in our series of designed peptides, showed the highest sensitivity to oxidation and detoxification to protect cells from ROS damage. In addition, this peptide underwent a phase transition in response to H2O2 produced by an oxidizing enzyme. This study demonstrates the design of a supramolecular biomaterial that is responsive to enzymatically generated ROS and can protect cells against oxidative stress.


Assuntos
Antioxidantes , Metionina , Peptídeos , Transição de Fase , Espécies Reativas de Oxigênio , Metionina/química , Metionina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Espécies Reativas de Oxigênio/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Oxirredução
2.
Chemistry ; 29(63): e202302261, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638672

RESUMO

Although phage display selection using a library of M13 bacteriophage has become a powerful tool for finding peptides that bind to target materials on demand, a remaining concern of this method is the interference by the M13 main body, which is a huge filament >103  times larger than the displayed peptide, and therefore would nonspecifically adhere to the target or sterically inhibit the binding of the displayed peptide. Meanwhile, filamentous phages are known to be orientable by an external magnetic field. If M13 filaments are magnetically oriented during the library selection, their angular arrangement relative to the target surface would be changed, being expected to control the interference by the M13 main body. This study reports that the magnetic orientation of M13 filaments vertical to the target surface significantly affects the selection. When the target surface was affinitive to the M13 main body, this orientation notably suppressed the nonspecific adhesion. Furthermore, when the target surface was less affinitive to the M13 main body and intrinsically free from the nonspecific adhesion, this orientation drastically changed the population of M13 clones obtained through library selection. The method of using no chemicals but only a physical stimulus is simple, clean, and expected to expand the scope of phage display selection.


Assuntos
Técnicas de Visualização da Superfície Celular , Biblioteca de Peptídeos , Peptídeos/metabolismo , Bacteriófago M13/genética , Bacteriófago M13/metabolismo , Fenômenos Magnéticos
3.
Chem Commun (Camb) ; 59(64): 9687-9697, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37440181

RESUMO

This Feature Article focuses on recent studies on the development of self-assembling materials that mimic and control dynamic bio-interfaces. Extracellular matrix (ECM) is a fundamental tissue at the cellular interface constructed by networks of fibrous proteins, which regulates a variety of cellular activities. Reconstruction of ECM has been demonstrated by self-assembling peptides. By combining the dynamic properties of the self-assembling peptides conjugated with full-length proteins, peptide-based supramolecular materials enable neuronal migration and regeneration of injured neural tissue. The phospholipid bilayer is the main component of the cell membrane. The morphology and deformation of the phospholipid bilayer relate directly to dynamic interfacial functions. Stabilization of the phospholipid nanosheet structure has been demonstrated by self-assembling peptides, and the stabilized bicelle is functional for extended blood circulation. By using a photo-responsive synthetic surfactant showing a mechanical opening/closing motion, endocytosis-like outside-in membrane deformation is triggered. The outside-in deformation allows for efficient encapsulation of micrometer-size substances such as phage viruses into the liposomes, and the encapsulated viruses can be delivered to multiple organs in a living body via blood administration. These supramolecular approaches to mimicking and controlling bio-interfaces present powerful ways to develop unprecedented regenerative medicines and drug delivery systems.


Assuntos
Peptídeos , Fosfolipídeos , Peptídeos/química , Matriz Extracelular/química , Membrana Celular , Materiais Biocompatíveis
4.
Nat Commun ; 13(1): 5424, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109556

RESUMO

Nanocapsules that collapse in response to guanosine triphosphate (GTP) have the potential as drug carriers for efficiently curing diseases caused by cancer and RNA viruses because GTP is present at high levels in such diseased cells and tissues. However, known GTP-responsive carriers also respond to adenosine triphosphate (ATP), which is abundant in normal cells as well. Here, we report the elaborate reconstitution of microtubule into a nanocapsule that selectively responds to GTP. When the tubulin monomer from microtubule is incubated at 37 °C with a mixture of GTP (17 mol%) and nonhydrolysable GTP* (83 mol%), a tubulin nanosheet forms. Upon addition of photoreactive molecular glue to the resulting dispersion, the nanosheet is transformed into a nanocapsule. Cell death results when a doxorubicin-containing nanocapsule, after photochemically crosslinked for properly stabilizing its shell, is taken up into cancer cells that overexpress GTP.


Assuntos
Nanocápsulas , Tubulina (Proteína) , Trifosfato de Adenosina/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Guanosina Trifosfato/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
5.
Chem Commun (Camb) ; 58(33): 5164-5167, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35388392

RESUMO

A metal-binding peptide appending cholic acid, Chol-MBP, formed bicelles by mixing with 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC). Coordination of Chol-MBP with Cu2+ stabilized DPPC bicelles against dilution and contamination of serum proteins, enabling extended blood circulation. This study demonstrates an effective supramolecular design of phospholipid bicelles with enhanced stability useful for membrane-based biomaterials.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Quelantes , Bicamadas Lipídicas/química , Peptídeos , Fosfolipídeos/química , Fosforilcolina
6.
Nat Commun ; 12(1): 6623, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799548

RESUMO

During injured tissue regeneration, the extracellular matrix plays a key role in controlling and coordinating various cellular events by binding and releasing secreted proteins in addition to promoting cell adhesion. Herein, we develop a cell-adhesive fiber-forming peptide that mimics the jigsaw-shaped hydrophobic surface in the dovetail-packing motif of glycophorin A as an artificial extracellular matrix for regenerative therapy. We show that the jigsaw-shaped self-assembling peptide forms several-micrometer-long supramolecular nanofibers through a helix-to-strand transition to afford a hydrogel under physiological conditions and disperses homogeneously in the hydrogel. The molecular- and macro-scale supramolecular properties of the jigsaw-shaped self-assembling peptide hydrogel allow efficient incorporation and sustained release of vascular endothelial growth factor, and demonstrate cell transplantation-free regenerative therapeutic effects in a subacute-chronic phase mouse stroke model. This research highlights a therapeutic strategy for injured tissue regeneration using the jigsaw-shaped self-assembling peptide supramolecular hydrogel.


Assuntos
Regeneração do Cérebro/fisiologia , Hidrogéis/química , Peptídeos/química , Proteínas/química , Adesivos , Animais , Engenharia Biomédica , Lesões Encefálicas/diagnóstico por imagem , Adesão Celular , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/química , Hidrogéis/uso terapêutico , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Nanofibras , Sistema Nervoso , Peptídeos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular
7.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066439

RESUMO

Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.


Assuntos
Reagentes de Ligações Cruzadas/química , Peptídeos/química , Multimerização Proteica , Materiais Biocompatíveis/química , Hidrogéis/química , Alicerces Teciduais/química
8.
Chembiochem ; 19(18): 1922-1926, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-29969169

RESUMO

Mixtures of a phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, DPPC) and a sodium-cholate-derived surfactant (SC-C5 ) at room temperature formed phospholipid bilayer fragments that were edge-stabilized by SC-C5 : so-called "bicelles". Because the bilayer melting point of DPPC (41 °C) is above room temperature and because SC-C5 has an exceptionally low critical micelle concentration (<0.5 mm), the bicelles are kinetically frozen at room temperature. Consequently, they exist even when the mixture is diluted to a concentration of 0.04 wt %. In addition, the lateral size of the bicelles can be fine-tuned by altering the molar ratio of DPPC to SC-C5 . On heating to ≈37 °C, the bicelles transformed into micelles composed of DPPC and SC-C5 . By taking advantage of the dilution tolerance, size tunability, and thermoresponsiveness, we demonstrated in vitro drug delivery based on use of the bicelles as carriers, which suggests their potential utility in transdermal drug delivery.


Assuntos
Preparações de Ação Retardada/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Tensoativos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Cinética , Micelas , Temperatura
9.
J Chem Phys ; 144(8): 084703, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26931714

RESUMO

We formed Si-rich W silicide films composed of Sin clusters, each of which encapsulates a W atom (WSi(n) clusters with 8 < n ≤ ∼ 12), by using a gas-phase reaction between WF6 and SiH4 in a hot-wall reactor. The hydrogenated WSi(n)H(x) clusters with reduced F concentration were synthesized in a heated gas phase and subsequently deposited on a substrate heated to 350-420 °C, where they dehydrogenated and coalesced into the film. Under a gas pressure of SiH4 high enough for the WSi(n)H(x) reactant to collide a sufficient number of times with SiH4 molecules before reaching the substrate, the resulting film was composed of WSi(n) clusters with a uniform n, which was determined by the gas temperature. The formed films were amorphous semiconductors with an optical gap of ∼0.8-1.5 eV and an electrical mobility gap of ∼0.05-0.12 eV, both of which increased as n increased from 8 to 12. We attribute this dependence to the reduction of randomness in the Si network as n increased, which decreased the densities of band tail states and localized states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA