Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1161582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234421

RESUMO

Introduction: Lactation overnutrition is a programming agent of energy metabolism, and litter size reduction leads to the early development of obesity, which persists until adulthood. Liver metabolism is disrupted by obesity, and increased levels of circulating glucocorticoids are pointed as a possible mediator for the obesity development, since bilateral adrenalectomy (ADX) can reduce obesity in different models of obesity. Methods: This study aimed to evaluate the effects of glucocorticoids on metabolic changes and liver lipogenesis and insulin pathway induced by lactation overnutrition. For this, on the postnatal day 3 (PND), 3 pups (small litter-SL) or 10 pups (normal litter-NL) were kept with each dam. On PND 60, male Wistar rats underwent bilateral adrenalectomy (ADX) or fictitious surgery (sham), and half of ADX animals received corticosterone (CORT- 25 mg/L) diluted in the drinking fluid. On PND 74, the animals were euthanized by decapitation for trunk blood collection, and liver dissection and storage. Results and Discussion: SL rats presented increased corticosterone, free fatty acids, total and LDL-cholesterol plasma levels, without changes in triglycerides (TG) and HDL-cholesterol. The SL group also showed increased content of liver TG, and expression of fatty acid synthase (FASN), but decreased expression of PI3Kp110 in the liver, compared to NL rats. In the SL group, the ADX decreased plasma levels of corticosterone, FFA, TG and HDL cholesterol, liver TG, and liver expression of FASN, and IRS2, compared to sham animals. In SL animals, CORT treatment increased plasma levels of TG and HDL cholesterol, liver TG, and expression of FASN, IRS1, and IRS2, compared with the ADX group. In summary, the ADX attenuated plasma and liver changes observed after lactation overnutrition, and CORT treatment could reverse most ADX-induced effects. Thus, increased circulating glucocorticoids are likely to play a pivotal role in liver and plasma impairments induced by lactation overnutrition in male rats.

2.
Brain Res Bull ; 195: 109-119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813046

RESUMO

Metabolic programming may be induced by reduction or enhancement of litter size, which lead to neonatal over or undernutrition, respectively. Changes in neonatal nutrition can challenge some regulatory processes in adulthood, such as the hypophagic effect of cholecystokinin (CCK). In order to investigate the effects of nutritional programming on the anorexigenic function of CCK in adulthood, pups were raised in small (SL, 3 pups per dam), normal (NL, 10 pups per dam), or large litters (LL, 16 pups per dam), and on postnatal day 60, male rats were treated with vehicle or CCK (10 µg/Kg) for the evaluation of food intake and c-Fos expression in the area postrema (AP), nucleus of solitary tract (NTS), and paraventricular (PVN), arcuate (ARC), ventromedial (VMH), and dorsomedial (DMH) nuclei of the hypothalamus. Overnourished rats showed increased body weight gain that was inversely correlated with neuronal activation of PaPo, VMH, and DMH neurons, whereas undernourished rats had lower body weight gain, inversely correlated with increased neuronal activation of PaPo only. SL rats showed no anorexigenic response and lower neuron activation in the NTS and PVN induced by CCK. LL exhibited preserved hypophagia and neuron activation in the AP, NTS, and PVN in response to CCK. CCK showed no effect in c-Fos immunoreactivity in the ARC, VMH, and DMH in any litter. These results indicate that anorexigenic actions, associated with neuron activation in the NTS and PVN, induced by CCK were impaired by neonatal overnutrition. However, these responses were not disrupted by neonatal undernutrition. Thus, data suggest that an excess or poor supply of nutrients during lactation display divergent effects on programming CCK satiation signaling in male adult rats.


Assuntos
Desnutrição , Hipernutrição , Ratos , Masculino , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Colecistocinina/farmacologia , Colecistocinina/metabolismo , Ratos Wistar , Núcleo Solitário/metabolismo , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Hipernutrição/metabolismo , Peso Corporal , Ingestão de Alimentos
3.
Brain Res Bull ; 189: 102-110, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029978

RESUMO

Vasoactive intestinal peptide (VIP), a neuromodulator present in the hypothalamus, plays an important role in the regulation of food intake. Paraventricular nucleus of the hypothalamus (PVN) is involved in ingestive responses and regulates the nitric oxide (NO) pathway. The main objectives of this study were to investigate metabolic changes established after different doses and times of VIP microinjection on the PVN, and the effect of VIP microinjection on the PVN on food intake and the role of NO in this control. In anesthetized rats, increased blood plasma glucose and insulin levels were observed following the doses of 40 and 80 ng/g of body weight. At the dose of 40 ng/g, VIP promoted hyperglycemia and hyperinsulinemia 5, 10, and 30 min after microinjection, and increased free fatty acids and total lipids plasma levels after 5 min, and triglycerides after 10 min. In awake animals, once again, VIP administration increased plasmatic levels of glucose, free fatty acids, corticosterone, and insulin 10 min after the microinjection. Moreover, VIP promoted hypophagia in the morning and night periods, and L-arginine (L-Arg) and monosodium glutamate (MSG) or a combination of both attenuated VIP-induced reduction on food intake. In addition, nitrate concentration in the PVN was decreased after VIP microinjection. Our data show that the PVN participates in the anorexigenic and metabolic effects of VIP, and that VIP-induced hypophagia is likely mediated by reduction of NO.


Assuntos
Insulinas , Núcleo Hipotalâmico Paraventricular , Animais , Arginina/metabolismo , Arginina/farmacologia , Glicemia/metabolismo , Corticosterona , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Insulinas/metabolismo , Insulinas/farmacologia , Neurotransmissores/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Ratos , Glutamato de Sódio/metabolismo , Glutamato de Sódio/farmacologia , Triglicerídeos/metabolismo , Triglicerídeos/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia
4.
Neurochem Int ; 155: 105300, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35151771

RESUMO

The arcuate nucleus of hypothalamus (ARC) integrates circulating factors that signal energy status. The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are widely distributed in the periphery and central nervous systems (CNS) and play important roles on energy balance. The present study aimed to investigate the responses of microinjection of VIP and PACAP in the ARC on metabolic changes and food intake. In addition, the activity of neurons in the ARC following intracerebroventricular (ICV) microinjection of these peptides was also evaluated. Microinjection of VIP or PACAP in the ARC decreased fasting-induced hyperphagia and food intake, decreased total lipids, and increased free fatty acids plasma concentrations. VIP microinjection in the ARC induced hyperglycemia and decreased total cholesterol level; and PACAP reduced triglycerides concentration. ICV microinjection of VIP and PACAP enhanced neuronal activation in the ARC, associated with lower fasting-induced hyperphagia and plasma metabolic changes (only VIP). These results suggest that VIP and PACAP play important roles in ARC, inducing hypophagia and peripheral metabolic changes, as hyperglycemia, increased free fatty acids and decreased total lipids plasma levels.


Assuntos
Núcleo Arqueado do Hipotálamo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Peptídeo Intestinal Vasoativo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Comportamento Alimentar , Hipotálamo/metabolismo , Lipídeos/sangue , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia
5.
Mol Cell Endocrinol ; 524: 111147, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33388353

RESUMO

This work evaluated the effects of neonatal overfeeding, induced by litter size reduction, on fertility and the noradrenaline-kisspeptin-gonadotrophin releasing hormone (GnRH) pathway in adult female rats. The litter size was adjusted to 3 pups with each mother in the small litters (SL) and 10 pups with each mother in the normal litters (NL). SL females exhibited metabolic changes associated with reproductive dysfunctions, shown by earlier vaginal opening and first estrus, later regular cyclicity onset, and lower and higher occurrences of estrus and diestrus phases, respectively, as well as reduced fertility, estradiol plasma levels, and mRNA expressions of tyrosine hydroxylase in the locus coeruleus, kisspeptin, and GnRH in the preoptic area in adult females in the afternoon of proestrus. These results suggest that neonatal overfeeding in female rats promotes reproductive dysfunctions in adulthood, such as lower estradiol plasma levels associated with impairments in fertility and noradrenaline-kisspeptin-GnRH pathway during positive feedback.


Assuntos
Envelhecimento/fisiologia , Estradiol/sangue , Fertilidade/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Norepinefrina/metabolismo , Hipernutrição/sangue , Hipernutrição/metabolismo , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Tronco Encefálico/patologia , Ciclo Estral , Feminino , Hormônio Liberador de Gonadotropina/genética , Gônadas/patologia , Hipotálamo/patologia , Lipídeos/sangue , Tamanho da Ninhada de Vivíparos , Masculino , Hipófise/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Maturidade Sexual , Aumento de Peso
6.
Endocrine ; 65(3): 675-682, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31325084

RESUMO

PURPOSE: The aim of this study is to evaluate the effects of adrenalectomy (ADX) and glucocorticoid in the changes induced by intracerebroventricular (ICV) administration of vasoactive intestinal peptide (VIP) on food intake and plasma parameters, as well as VIP receptor subtype 2 (VPAC2) mRNA expression in different hypothalamic nuclei of male rats. METHODS: Male Wistar rats (260-280 g) were subjected to ADX or sham surgery, 7 days before the experiments. Half of ADX animals received corticosterone (ADX + CORT) in the drinking water. Animals with 16 h of fasting received ICV microinjection of VIP or saline (0.9% NaCl). After 15 min: (1) animals were fed, and the amount of food ingested was quantified for 120 min; or (2) animals were euthanized and blood was collected for biochemical measurements. Determination of VPAC2 mRNA levels in LHA, ARC, and PVN was performed from animals with microinjection of saline. RESULTS: VIP treatment promoted the anorexigenic effect, which was not observed in ADX animals. Microinjection of VIP also induced an increase in blood plasma glucose and corticosterone levels, and a reduction in free fatty acid plasma levels, but adrenalectomy abolished these effects. In addition, adrenalectomy reduced mRNA expression of VPAC2 in the lateral hypothalamic area and arcuate nucleus, but not in the paraventricular nucleus. CONCLUSIONS: These results suggest that adrenal glands are required for VIP-induced changes in food intake and plasma parameters, and these responses are associated with reduction in the expression of VPAC2 in the hypothalamus after adrenalectomy.


Assuntos
Adrenalectomia/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/análise , Corticosterona/sangue , Corticosterona/farmacologia , Ácidos Graxos não Esterificados/sangue , Região Hipotalâmica Lateral/metabolismo , Masculino , Microinjeções , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo
7.
Life Sci ; 218: 185-196, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594666

RESUMO

Glucocorticoids increase appetite and body weight gain in rats and ovariectomy (OVX) induces obesity, while estrogen (E) replacement attenuates OVX-induced changes. It is known that animals with obesity are more responsive to glucocorticoids anabolic effects than lean ones. This study aimed to evaluate the effects of ovariectomy and the protective role of estradiol on the responses induced by prolonged treatment with corticosterone or dexamethasone on energy homeostasis. For this, female Wistar rats subjected to SHAM or OVX surgery, composing the SHAM, OVX, and OVX + E groups, received water/ETOH or corticosterone (15 mg/l) and water or dexamethasone (0.5 µg/l) as drinking fluid for 28 days. The OVX + E group, since the first day, was daily treated with estradiol (10 µg/0.2 ml/rat SC). OVX induced enhancement of body weight gain, food intake, area of the adipocytes and weight of retroperitoneal adipose tissue, plasma cholesterol and glucose intolerance, with reduction on uterus weight. In OVX animals, treatment with glucocorticoids induced increases on body weight gain, food intake, weight of retroperitoneal adipose tissue, area of adipocytes of retroperitoneal and perigonadal + perirenal fat depots, plasma triglycerides (corticosterone), and glycemic response after GTT (dexamethasone), with minor effects on SHAM group. Estradiol treatment to OVX rats prevented these effects induced by glucocorticoids, in addition to decrease body weight gain, fat accumulation and glucose intolerance, and to increase weight of uterus, triglycerides and free fatty acids plasma levels. These data demonstrate that protection against glucocorticoids-induced anabolic responses in females is eliminated by ovariectomy and estradiol can prevent these responses.


Assuntos
Anabolizantes/toxicidade , Estrogênios/farmacologia , Glucocorticoides/toxicidade , Intolerância à Glucose/prevenção & controle , Obesidade/prevenção & controle , Ovariectomia/efeitos adversos , Substâncias Protetoras/farmacologia , Animais , Peso Corporal , Feminino , Intolerância à Glucose/etiologia , Intolerância à Glucose/patologia , Obesidade/etiologia , Obesidade/patologia , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
8.
Horm Behav ; 105: 138-145, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30138609

RESUMO

Vasoactive intestinal peptide (VIP) and corticotrophin-releasing factor (CRF) are anorexigenic neuropeptides that act in the hypothalamus to regulate food intake. Intracerebroventricular (ICV) microinjection of VIP promotes increased plasma adrenocorticotrophic hormone (ACTH) and corticosterone, indicating that VIP activates hypothalamic-pituitary-adrenal axis. The aim of this study was to evaluate the interaction between VIP and CRF, by verifying the effects of ICV administration of VIP on the activity of neurons and CRF mRNA expression in paraventricular nucleus of hypothalamus (PVN). In addition, it was evaluated the effects of pretreatment with CRF type 1 receptor (CRFR1) antagonist (Antalarmin, ANT) or CRF type 2 receptor (CRFR2) antagonist (Antisauvagine-30, AS30) on VIP-induced changes on food intake and plasma parameters of male rats. Compared to Saline group, VIP increased not only the number of Fos-related antigens (FRA)-immunoreactive neurons in the PVN but also CRF mRNA levels in this nucleus. Both ANT and AS30 treatment attenuated the inhibition of food intake promoted by VIP, ANT showing a more pronounced effect. Both antagonists also attenuated VIP-induced reduction and enhancement of free fatty acids and corticosterone plasma levels, respectively, and only AS30 was able to attenuate the hyperglycemia. These results suggest that CRF is an important mediador of VIP effects on energy balance, and CRFR1 and CRFR2 are involved in these responses.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , Transtornos da Alimentação e da Ingestão de Alimentos/sangue , Transtornos da Alimentação e da Ingestão de Alimentos/induzido quimicamente , Peptídeo Intestinal Vasoativo/efeitos adversos , Hormônio Adrenocorticotrópico/sangue , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Corticosterona/sangue , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ácidos Graxos/sangue , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Wistar , Peptídeo Intestinal Vasoativo/metabolismo
9.
Int J Mol Sci ; 18(7)2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677618

RESUMO

Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 µg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 µM/5 µL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 µM/5 µL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.


Assuntos
Peso Corporal , Hipotálamo/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina , Lipopolissacarídeos/efeitos adversos , Animais , Modelos Animais de Doenças , Endotoxemia , Inflamação/patologia , Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais
10.
Neuropeptides ; 46(3): 119-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22425130

RESUMO

Glucocorticoid deficiency is associated with a decrease of food intake. Orexigenic peptides, neuropeptide Y (NPY) and agouti related protein (AgRP), and the anorexigenic peptide proopiomelanocortin (POMC), expressed in the arcuate nucleus of the hypothalamus (ARC), are regulated by meal-induced signals. Orexigenic neuropeptides, melanin-concentrating hormone (MCH) and orexin, expressed in the lateral hypothalamic area (LHA), also control food intake. Thus, the present study was designed to test the hypothesis that glucocorticoids are required for changes in the expression of hypothalamic neuropeptides induced by feeding. Male Wistar rats (230-280 g) were subjected to ADX or sham surgery. ADX animals received 0.9% NaCl in the drinking water, and half of them received corticosterone in the drinking water (B: 25 mg/L, ADX+B). Six days after surgery, animals were fasted for 16 h and they were decapitated before or 2 h after refeeding for brain tissue and blood collections. Adrenalectomy decreased NPY/AgRP and POMC expression in the ARC in fasted and refed animals, respectively. Refeeding decreased NPY/AgRP and increased POMC mRNA expression in the ARC of sham and ADX+B groups, with no effects in ADX animals. The expression of MCH and orexin mRNA expression in the LHA was increased in ADX and ADX+B groups in fasted condition, however there was no effect of refeeding on the expression of MCH and orexin in the LHA in the three experimental groups. Refeeding increased plasma leptin and insulin levels in sham and ADX+B animals, with no changes in leptin concentrations in ADX group, and insulin response to feeding was lower in this group. Taken together, these data demonstrated that circulating glucocorticoids are required for meal-induced changes in NPY, AgRP and POMC mRNA expression in the ARC. The lower leptin and insulin responses to feeding may contribute to the altered hypothalamic neuropeptide expression after adrenalectomy.


Assuntos
Ingestão de Alimentos/fisiologia , Glucocorticoides/fisiologia , Hormônios Hipotalâmicos/biossíntese , Hipotálamo/metabolismo , Neuropeptídeos/biossíntese , Adrenalectomia , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/metabolismo , Jejum/fisiologia , Insulina/sangue , Leptina/sangue , Masculino , Neuropeptídeo Y/biossíntese , Pró-Opiomelanocortina/biossíntese , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
11.
J Appl Physiol (1985) ; 106(2): 596-604, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19023022

RESUMO

Glucocorticoids have major effects on food intake, demonstrated by the decrease of food intake following adrenalectomy. Satiety signals are relayed to the nucleus of the solitary tract (NTS), which has reciprocal projections with the arcuate nucleus (ARC) and paraventricular nucleus (PVN) of the hypothalamus. We evaluated the effects of glucocorticoids on the activation of hypothalamic and NTS neurons induced by food intake in rats subjected to adrenalectomy (ADX) or sham surgery 7 days before the experiments. One-half of ADX animals received corticosterone (ADX+B) in the drinking water (B: 25 mg/l). Fos/tyrosine hydroxylase (TH), Fos/corticotrophin-releasing factor (CRF) and Fos immunoreactivity were assessed in the NTS, PVN, and ARC, respectively. Food intake and body weight were reduced in the ADX group compared with sham and ADX+B groups. Fos and Fos/TH in the NTS, Fos, and Fos/CRF immunoreactive neurons in the PVN and Fos in the ARC were increased after refeeding, with higher number in the ADX group, compared with sham and ADX+B groups. CCK administration showed no hypophagic effect on ADX group despite a similar increase of Fos/TH immunoreactive neurons in the NTS compared with sham and ADX+B groups, suggesting that CCK alone cannot further increase the anorexigenic effect induced by glucocorticoid deficiency. The present data indicate that glucocorticoid withdrawal reduced food intake, which was associated with higher activation of ARC, CRF neurons of the PVN, and catecholaminergic neurons of the NTS. In the absence of glucocorticoids, satiety signals elicited during a meal lead to an augmented activation of brain stem and hypothalamic pathways.


Assuntos
Comportamento Animal , Ingestão de Alimentos , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Glucocorticoides/deficiência , Hipotálamo/fisiopatologia , Resposta de Saciedade , Núcleo Solitário/fisiopatologia , Adrenalectomia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiopatologia , Peso Corporal , Catecolaminas/metabolismo , Colecistocinina/administração & dosagem , Corticosterona/administração & dosagem , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Ingestão de Líquidos , Jejum , Transtornos da Alimentação e da Ingestão de Alimentos/metabolismo , Hipotálamo/metabolismo , Masculino , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Núcleo Solitário/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA