RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Carica papaya L., a common fruit crop of the family Caricaceae and its leaf juice/extract is a traditionally commended preparation against dengue and other thrombocytopenic diseases by many Asian countries. AIM OF THE STUDY: The present study posits the potential cellular mechanisms of platelet augmentation activity of mature leaf juice of Sri Lankan wild-type Carica papaya. MATERIALS AND METHODS: C. papaya leaf juice prepared from different cultivar types, maturity of the leaf, agro-climatic region, and preparation methods were orally administered to hydroxyurea-induced thrombocytopenic rats at 0.72 ml/100 g BW dosage to investigate the most potent platelet increasing preparation. The papaya juice doses; low dose (LD-0.18 ml/100 g BW), human equivalent dose (HED-0.36 ml/100 g BW), and high dose (HD-0.72 ml/100 g BW), were administered to thrombocytopenic rats (N = 6/group) daily for three consecutive days and post-treatment plasma levels of interleukin 6 (IL-6), thrombopoietin (TPO), and platelet-activating factor (PAF) were quantified using specific rat ELISA kits. The mature leaf juice of C. papaya induced IL-6 secretion from bone marrow cell (BMC) cultures was quantified using ELISA. The ability of papaya juice to protect the platelet membrane, from the damage caused by the lytic agent was analyzed in vitro using the lactate dehydrogenase (LDH) assay. The effect of the mature leaf juice of C. papaya on secondary hemostasis was investigated using blood coagulation and clot hydrolyzing activity. RESULTS: The comparative analysis revealed that the platelet increasing activity of C. papaya leaf did not significantly differ among different types of cultivar, maturity of the leaf, agro-climatic regions and preparation methods (p > 0.05). Both TPO and PAF levels in thrombocytopenic rats diminished when treated with all three doses of the mature leaf juice of C. papaya (p < 0.05), yet IL-6 plasma level was unaltered (p > 0.05). Nevertheless, ex vivo treatment of the mature leaf juice of C. papaya had significantly enhanced IL-6 levels of rat BMC cultures (p < 0.05). Pre-treatment of platelets with the mature leaf juice of C. papaya at different concentrations significantly inhibited LDH leakage from platelets and may have reduced the membrane damage caused by the lytic agent (p < 0.05). Treatment of mature leaf juice of C. papaya also significantly reduced blood clotting time through the extrinsic pathway of the blood coagulation cascade (p < 0.05). Further, prolonged incubation of the plasma clot with different concentrations of the papaya leaf juice revealed dose-dependent hydrolysis of the blood clot, indicating fibrinolysis activity. CONCLUSIONS: The current study exceeded the traditional medicinal claims, and scientifically affirmed the platelet augmentation activity of mature leaf juice of C. papaya. The mechanistic rationale tested herein explicated that the platelet augmentation activity of the papaya leaf juice can be partially attributed to the stimulation of bone marrow megakaryocytes via modulating thrombopoietic cytokines TPO and IL-6, and by inhibiting the secretion of PAF, while reducing the peripheral platelet destruction by stabilizing the platelet membrane. Further, mature leaf juice of C. papaya imparted both pro-coagulation and fibrinolysis activity of secondary hemostasis endorsing its potential against thrombocytopenia.
Assuntos
Carica , Extratos Vegetais , Trombocitopenia , Animais , Humanos , Interleucina-6/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Ratos , Sri Lanka , Trombocitopenia/metabolismo , Trombocitopenia/terapiaRESUMO
Radioprotectors are agents that have the potential to act against radiation damage to cells. These are equally invaluable in radiation protection, both in intentional and unintentional radiation exposure. It is however, complex to use a universal radioprotector that could be beneficial in diverse contexts such as in radiotherapy, nuclear accidents, and space travel, as each of these circumstances have unique requirements. In a clinical setting such as in radiotherapy, a radioprotector is used to increase the efficacy of cancer treatment. The protective agent must act against radiation damage selectively in normal healthy cells while enhancing the radiation damage imparted on cancer cells. In the context of radiotherapy, plant-based compounds offer a more reliable solution over synthetic ones as the former are less expensive, less toxic, possess synergistic phytochemical activity, and are environmentally friendly. Phytochemicals with both radioprotective and anticancer properties may enhance the treatment efficacy by two-fold. Hence, plant based radioprotective agents offer a promising field to progress forward, and to expand the boundaries of radiation protection. This review is an account on radioprotective properties of phytochemicals and complications encountered in the development of the ideal radioprotector to be used as an adjunct in radiotherapy.
Assuntos
Exposição à Radiação , Proteção Radiológica , Protetores contra Radiação , Plantas , Protetores contra Radiação/uso terapêuticoRESUMO
Gastrointestinal (GI) parasites may impose detrimental consequences on wildlife populations due to their capacity to cause mortality and reduce fitness. Additionally, wild animals play an important role in the transmission of zoonoses. Despite this importance, information on GI parasites of tropical wild mammals is critically lacking. The present study aimed to document GI parasites of six wild-dwelling large mammal taxa in Sri Lanka: Asian elephant (Elephas maximus), Sloth bear (Melursus ursinus), civet (Paradoxurus sp.), Leopard (Panthera pardus), Grey langur (Semnopithecus priam) and buffalo (Bubalus sp). Fresh faecal samples (n = 56) collected from the Wasgomuwa National Park, Sri Lanka were subjected to coprological examination using faecal smears, and the brine floatation technique followed by microscopic identification; quantitative data were accrued using the formol-ether method. The survey revealed a high prevalence of GI parasites, where 86% (48/56) of faecal samples screened positive for parasitic infections. Faecal samples of the civet, buffalo and Leopard recorded 100% prevalence, while the lowest (40%) was recorded for the Grey langur. Eight types of GI parasites were documented: protozoan cysts, platyhelminth ova (three types of digenean and a single cyclophillidean type), nematode ova (strongyle, strongyloid, ascarid, and trichuroid types) and rhabditiform larvae. The buffaloes and civets had a comparatively high number and diversity of GI parasites (buffalo: 7 types, H' = 1.02; civet: 6 types, H' = 1.52), whilst only a single type (digenean) was detected in the Grey langur. Likewise, parasite loads were also highly variable; highest in the bear (486 per g faeces) and lowest in the monkey (10 per g faeces). The outcome of this survey is important on two accounts; i) to fill the knowledge gap on GI parasites of tropical wild mammals, and ii) the revelation of many first-time parasite-host records for some of the threatened wild-dwelling large mammals in Sri Lanka.
RESUMO
This study was focused on developing a drug carrier system composed of a polymer containing hydroxyapatite (HAp) shell and a magnetic core of iron oxide nanoparticles. Doxorubicin and/or curcumin were loaded into the carrier via a simple diffusion deposition approach, with encapsulation efficiencies (EE) for curcumin and doxorubicin of 93.03⯱â¯0.3% and 97.37⯱â¯0.12% respectively. The co-loading of curcumin and doxorubicin led to a total EE of 76.02⯱â¯0.48%. Release studies were carried out at pH 7.4 and 5.3, and revealed a greater extent of release at pH 5.3, showing the formulations to have potential applications in tumor microenvironments. Cytotoxicity assays, fluorescence imaging and flow cytometry demonstrated that the formulations could effectively inhibit the growth of MCF-7 (breast) and HEpG2 (liver) cancer cells, being more potent than the free drug molecules both in terms of dose and duration of action. Additionally, hemolysis tests and cytotoxicity evaluations determined the drug-loaded carriers to be non-toxic towards non-cancerous cells. These formulations thus have great potential in the development of new cancer therapeutics.
Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Neoplasias Hepáticas/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Curcumina/administração & dosagem , Doxorrubicina/administração & dosagem , Durapatita/química , Feminino , Compostos Férricos/química , Citometria de Fluxo , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Masculino , Nanopartículas/química , Imagem Óptica , Polímeros/química , Ratos WistarRESUMO
Immune cell and cytokine profiles in relation to metal exposure though much studied in mammals has not been adequately investigated in amphibians, due mainly to lack of suitable reagents for cytokine profiling in non-model species. However, interspecies cross reactivity of cytokines permitted us to assay levels of IFNγ, TNFα, IL6 and IL10in a common anuran, the Indian green frog (Euphlyctis hexadactylus), exposed to heavy metals (Cd, Cr, Cu, Zn and Pb, at ~5ppm each) under field and laboratory settings in Sri Lanka. Enumeration of immune cells in blood and melanomacrophages in the liver, assay of serum and hepatic cytokines, and Th1/Th2 cytokine polarisation were investigated. Immune cell counts indicated overall immunosuppression with decreasing total WBC and splenocyte counts while neutrophil/lymphocyte ratio increased with metal exposure, indicating metal mediated stress. Serum IL6 levels of metal exposed frogs reported the highest (~9360pg/mL) of all cytokines tested. Significantly elevated IFNγ production (P<0.05) was evident in heavy metal exposed frogs. Th1/Th2 cytokine ratio in both serum and liver tissue homogenates was Th1 skewed due to significantly higher production of pro-inflammatory cytokines, IFNγ in serum and TNFα in the liver (P<0.01).Metal mediated aggregations of melanomacrophages in the liver were positively and significantly (P<0.05) correlated with the hepatic expression of TNFα, IL6 and IL10 activity. Overall, Th1 skewed response may well be due to oxidative stress mediated nuclear factor κ-light chain enhancer of activated B cells (NFκB) which enhances the transcription of pro-inflammatory cytokines. Xenobiotic stress has recently imposed an unprecedented level of threat to wildlife, particularly to sensitive species such as amphibians. Therefore, understanding the interactions between physiological stress and related immune responses is fundamental to conserve these environmental sentinels in the face of emerging eco-challenges.