Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Leukoc Biol ; 114(6): 585-594, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37480361

RESUMO

Neutrophils are innate immune cells that are key to protecting the host against infection and maintaining body homeostasis. However, if dysregulated, they can contribute to disease, such as in cancer or chronic autoinflammatory disorders. Recent studies have highlighted the heterogeneity in the neutrophil compartment and identified the presence of immature neutrophils and their precursors in these pathologies. Therefore, understanding neutrophil maturity and the mechanisms through which they contribute to disease is critical. Neutrophils were first characterized morphologically by Ehrlich in 1879 using microscopy, and since then, different technologies have been used to assess neutrophil maturity. The advances in the imaging field, including state-of-the-art microscopy and machine learning algorithms for image analysis, reinforce the use of neutrophil nuclear morphology as a fundamental marker of maturity, applicable for objective classification in clinical diagnostics. New emerging approaches, such as the capture of changes in chromatin topology, will provide mechanistic links between the nuclear shape, chromatin organization, and transcriptional regulation during neutrophil maturation.


Assuntos
Cromatina , Neutrófilos , Regulação da Expressão Gênica
2.
Nat Immunol ; 24(5): 767-779, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095375

RESUMO

Sepsis arises from diverse and incompletely understood dysregulated host response processes following infection that leads to life-threatening organ dysfunction. Here we showed that neutrophils and emergency granulopoiesis drove a maladaptive response during sepsis. We generated a whole-blood single-cell multiomic atlas (272,993 cells, n = 39 individuals) of the sepsis immune response that identified populations of immunosuppressive mature and immature neutrophils. In co-culture, CD66b+ sepsis neutrophils inhibited proliferation and activation of CD4+ T cells. Single-cell multiomic mapping of circulating hematopoietic stem and progenitor cells (HSPCs) (29,366 cells, n = 27) indicated altered granulopoiesis in patients with sepsis. These features were enriched in a patient subset with poor outcome and a specific sepsis response signature that displayed higher frequencies of IL1R2+ immature neutrophils, epigenetic and transcriptomic signatures of emergency granulopoiesis in HSPCs and STAT3-mediated gene regulation across different infectious etiologies and syndromes. Our findings offer potential therapeutic targets and opportunities for stratified medicine in severe infection.


Assuntos
Neutrófilos , Sepse , Humanos , Hematopoese , Células-Tronco Hematopoéticas , Regulação da Expressão Gênica
3.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37115585

RESUMO

The first immune-activating changes within joint resident cells that lead to pathogenic leukocyte recruitment during articular inflammation remain largely unknown. In this study, we employ state-of-the-art confocal microscopy and image analysis in a systemic, whole-organ, and quantitative way to present evidence that synovial inflammation begins with the activation of lining macrophages. We show that lining, but not sublining macrophages phagocytose immune complexes containing the model antigen. Using the antigen-induced arthritis (AIA) model, we demonstrate that on recognition of antigen-antibody complexes, lining macrophages undergo significant activation, which is dependent on interferon regulatory factor 5 (IRF5), and produce chemokines, most notably CXCL1. Consequently, at the onset of inflammation, neutrophils are preferentially recruited in the vicinity of antigen-laden macrophages in the synovial lining niche. As inflammation progresses, neutrophils disperse across the whole synovium and form swarms in synovial sublining during resolution. Our study alters the paradigm of lining macrophages as immunosuppressive cells to important instigators of synovial inflammation.


Assuntos
Artrite , Humanos , Infiltração de Neutrófilos , Artrite/patologia , Macrófagos , Membrana Sinovial/patologia , Inflamação/patologia , Antígenos
4.
Immunity ; 55(12): 2217-2219, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516813

RESUMO

Inflammatory insults affect platelet production, but it is yet unknown what mechanisms can drive rapid adaptations in thrombopoiesis. In this issue of Immunity, Petzold et al. (2022) propose that neutrophils "pluck" on megakaryocytes in the bone marrow to tune platelet release.


Assuntos
Plaquetas , Neutrófilos , Trombopoese , Megacariócitos , Medula Óssea
5.
Sci Adv ; 8(40): eabq5384, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197985

RESUMO

Low plasma iron (hypoferremia) induced by hepcidin is a conserved inflammatory response that protects against infections but inhibits erythropoiesis. How hypoferremia influences leukocytogenesis is unclear. Using proteomic data, we predicted that neutrophil production would be profoundly more iron-demanding than generation of other white blood cell types. Accordingly in mice, hepcidin-mediated hypoferremia substantially reduced numbers of granulocytes but not monocytes, lymphocytes, or dendritic cells. Neutrophil rebound after anti-Gr-1-induced neutropenia was blunted during hypoferremia but was rescued by supplemental iron. Similarly, hypoferremia markedly inhibited pharmacologically stimulated granulopoiesis mediated by granulocyte colony-stimulating factor and inflammation-induced accumulation of neutrophils in the spleen and peritoneal cavity. Furthermore, hypoferremia specifically altered neutrophil effector functions, suppressing antibacterial mechanisms but enhancing mitochondrial reactive oxygen species-dependent NETosis associated with chronic inflammation. Notably, antagonizing endogenous hepcidin during acute inflammation enhanced production of neutrophils. We propose plasma iron modulates the profile of innate immunity by controlling monocyte-to-neutrophil ratio and neutrophil activity in a therapeutically targetable system.

6.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522219

RESUMO

Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.


Assuntos
Neoplasias , Neutrófilos , Humanos , Imunidade Inata , Inflamação , Neoplasias/genética , Fenótipo
7.
Rheumatology (Oxford) ; 61(3): 913-925, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34559213

RESUMO

Despite extensive research, there is still no treatment that would lead to remission in all patients with rheumatoid arthritis as our understanding of the affected site, the synovium, is still incomplete. Recently, single-cell technologies helped to decipher the cellular heterogeneity of the synovium; however, certain synovial cell populations, such as endothelial cells or peripheral neurons, remain to be profiled on a single-cell level. Furthermore, associations between certain cellular states and inflammation were found; whether these cells cause the inflammation remains to be answered. Similarly, cellular zonation and interactions between individual effectors in the synovium are yet to be fully determined. A deeper understanding of cell signalling and interactions in the synovium is crucial for a better design of therapeutics with the goal of complete remission in all patients.


Assuntos
Artrite Reumatoide/patologia , Membrana Sinovial/citologia , Linfócitos B/fisiologia , Comunicação Celular/fisiologia , Células Endoteliais/fisiologia , Fibroblastos/fisiologia , Heterogeneidade Genética , Granulócitos/fisiologia , Humanos , Macrófagos/fisiologia , Sistema Nervoso Periférico/citologia , Fagócitos/fisiologia , Transdução de Sinais/fisiologia , Análise de Célula Única , Linfócitos T/fisiologia , Transcriptoma
8.
Nat Commun ; 12(1): 6702, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795257

RESUMO

Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.


Assuntos
Benzamidas/farmacologia , Quinase 2 de Adesão Focal/metabolismo , Inflamação/prevenção & controle , Fatores Reguladores de Interferon/metabolismo , Pirazinas/farmacologia , Sulfonamidas/farmacologia , Animais , Células Cultivadas , Colite/genética , Colite/metabolismo , Colite/prevenção & controle , Citocinas/genética , Citocinas/metabolismo , Quinase 2 de Adesão Focal/genética , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Fatores Reguladores de Interferon/genética , Intestinos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosforilação/efeitos dos fármacos , Células RAW 264.7
9.
Trends Immunol ; 42(9): 795-806, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373208

RESUMO

The tissue microenvironment is a major driver in imprinting tissue-specific macrophage functions in various mammalian tissues. As monocytes are recruited into the gastrointestinal (GI) tract at steady state and inflammation, they rapidly adopt a tissue-specific and distinct transcriptome. However, the GI tract varies significantly along its length, yet most studies of intestinal macrophages do not directly compare the phenotype and function of these macrophages in the small and large intestine, thus leading to disparities in data interpretations. This review highlights differences along the GI tract that are likely to influence macrophage function, with a specific focus on diet and microbiota. This analysis may fuel further investigation regarding the interplay between the intestinal immune system and GI tissue microenvironments, ideally providing unique therapeutic targets to modulate specific intestinal macrophage populations and/or functions.


Assuntos
Trato Gastrointestinal , Microbiota , Animais , Intestinos , Macrófagos , Monócitos
10.
Circulation ; 144(12): 961-982, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34255973

RESUMO

BACKGROUND: Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. METHODS: Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. RESULTS: In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. CONCLUSIONS: Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.


Assuntos
Aterosclerose/imunologia , Diabetes Mellitus Experimental/imunologia , Hiperglicemia/imunologia , Imunidade Celular/imunologia , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Animais , Aterosclerose/patologia , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Endarterectomia das Carótidas , Humanos , Hiperglicemia/patologia , Leucócitos Mononucleares/patologia , Macrófagos/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos
11.
Nat Immunol ; 22(9): 1093-1106, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34282331

RESUMO

Neutrophils display distinct gene expression patters depending on their developmental stage, activation state and tissue microenvironment. To determine the transcription factor networks that shape these responses in a mouse model, we integrated transcriptional and chromatin analyses of neutrophils during acute inflammation. We showed active chromatin remodeling at two transition stages: bone marrow-to-blood and blood-to-tissue. Analysis of differentially accessible regions revealed distinct sets of putative transcription factors associated with control of neutrophil inflammatory responses. Using ex vivo and in vivo approaches, we confirmed that RUNX1 and KLF6 modulate neutrophil maturation, whereas RELB, IRF5 and JUNB drive neutrophil effector responses and RFX2 and RELB promote survival. Interfering with neutrophil activation by targeting one of these factors, JUNB, reduced pathological inflammation in a mouse model of myocardial infarction. Therefore, our study represents a blueprint for transcriptional control of neutrophil responses in acute inflammation and opens possibilities for stage-specific therapeutic modulation of neutrophil function in disease.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Inflamação/imunologia , Neutrófilos/imunologia , Ativação Transcricional/genética , Animais , Células CHO , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Cricetulus , Feminino , Fatores Reguladores de Interferon/metabolismo , Fator 6 Semelhante a Kruppel/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Fatores de Transcrição de Fator Regulador X/metabolismo , Fator de Transcrição RelB/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
12.
J Immunol ; 206(7): 1515-1527, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33608456

RESUMO

The PI3K pathway plays a key role in B cell activation and is important for the differentiation of Ab producing plasma cells (PCs). Although much is known about the molecular mechanisms that modulate PI3K signaling in B cells, the transcriptional regulation of PI3K expression is poorly understood. In this study, we identify the zinc finger protein Zbtb18 as a transcriptional repressor that directly binds enhancer/promoter regions of genes encoding class I PI3K regulatory subunits, subsequently limiting their expression, dampening PI3K signaling and suppressing PC responses. Following activation, dividing B cells progressively downregulated Zbtb18, allowing gradual amplification of PI3K signals and enhanced development of PCs. Human Zbtb18 displayed similar expression patterns and function in human B cells, acting to inhibit development of PCs. Furthermore, a number of Zbtb18 mutants identified in cancer patients showed loss of suppressor activity, which was also accompanied by impaired regulation of PI3K genes. Taken together, our study identifies Zbtb18 as a repressor of PC differentiation and reveals its previously unappreciated function as a transcription modulator of the PI3K signaling pathway.


Assuntos
Linfócitos B/imunologia , Neoplasias/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Plasmócitos/imunologia , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Imunidade Humoral , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Repressoras/genética , Transdução de Sinais
13.
Cell ; 183(5): 1282-1297.e18, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33098771

RESUMO

Classically considered short-lived and purely defensive leukocytes, neutrophils are unique in their fast and moldable response to stimulation. This plastic behavior may underlie variable and even antagonistic functions during inflammation or cancer, yet the full spectrum of neutrophil properties as they enter healthy tissues remains unexplored. Using a new model to track neutrophil fates, we found short but variable lifetimes across multiple tissues. Through analysis of the receptor, transcriptional, and chromatin accessibility landscapes, we identify varying neutrophil states and assign non-canonical functions, including vascular repair and hematopoietic homeostasis. Accordingly, depletion of neutrophils compromised angiogenesis during early age, genotoxic injury, and viral infection, and impaired hematopoietic recovery after irradiation. Neutrophils acquired these properties in target tissues, a process that, in the lungs, occurred in CXCL12-rich areas and relied on CXCR4. Our results reveal that tissues co-opt neutrophils en route for elimination to induce programs that support their physiological demands.


Assuntos
Linhagem da Célula , Neutrófilos/metabolismo , Especificidade de Órgãos , Animais , Cromatina/metabolismo , Feminino , Hematopoese , Intestinos/irrigação sanguínea , Pulmão/irrigação sanguínea , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores CXCR4/metabolismo , Análise de Célula Única , Transcrição Gênica , Transcriptoma/genética
14.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32960815

RESUMO

Giant cell arteritis (GCA) is a common form of primary systemic vasculitis in adults, with no reliable indicators of prognosis or treatment responses. We used single cell technologies to comprehensively map immune cell populations in the blood of patients with GCA and identified the CD66b+CD15+CD10lo/-CD64- band neutrophils and CD66bhiCD15+CD10lo/-CD64+/bright myelocytes/metamyelocytes to be unequivocally associated with both the clinical phenotype and response to treatment. Immature neutrophils were resistant to apoptosis, remained in the vasculature for a prolonged period of time, interacted with platelets, and extravasated into the tissue surrounding the temporal arteries of patients with GCA. We discovered that immature neutrophils generated high levels of extracellular reactive oxygen species, leading to enhanced protein oxidation and permeability of endothelial barrier in an in vitro coculture system. The same populations were also detected in other systemic vasculitides. These findings link functions of immature neutrophils to disease pathogenesis, establishing a clinical cellular signature of GCA and suggesting different therapeutic approaches in systemic vascular inflammation.


Assuntos
Doenças Autoimunes/imunologia , Arterite de Células Gigantes/metabolismo , Neutrófilos/imunologia , Vasculite Sistêmica/imunologia , Doenças Vasculares/metabolismo , Idoso , Antígenos CD/metabolismo , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Apoptose/genética , Doenças Autoimunes/sangue , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Linhagem da Célula/genética , Técnicas de Cocultura , Feminino , Proteínas Ligadas por GPI/metabolismo , Arterite de Células Gigantes/imunologia , Arterite de Células Gigantes/patologia , Células Precursoras de Granulócitos/metabolismo , Células Precursoras de Granulócitos/patologia , Humanos , Contagem de Leucócitos , Antígenos CD15/metabolismo , Masculino , Pessoa de Meia-Idade , Neprilisina/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patologia , Oxirredução , Prognóstico , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única , Vasculite Sistêmica/sangue , Vasculite Sistêmica/metabolismo , Vasculite Sistêmica/patologia , Artérias Temporais/imunologia , Artérias Temporais/metabolismo , Artérias Temporais/patologia , Doenças Vasculares/sangue , Doenças Vasculares/imunologia , Doenças Vasculares/patologia
15.
Sci Immunol ; 5(47)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444476

RESUMO

Mononuclear phagocytes (MNPs) are vital for maintaining intestinal homeostasis but, in response to acute microbial stimulation, can also trigger immunopathology, accelerating recruitment of Ly6Chi monocytes to the gut. The regulators that control monocyte tissue adaptation in the gut remain poorly understood. Interferon regulatory factor 5 (IRF5) is a transcription factor previously shown to play a key role in maintaining the inflammatory phenotype of macrophages. Here, we investigate the impact of IRF5 on the MNP system and physiology of the gut at homeostasis and during inflammation. We demonstrate that IRF5 deficiency has a limited impact on colon physiology at steady state but ameliorates immunopathology during Helicobacter hepaticus-induced colitis. Inhibition of IRF5 activity in MNPs phenocopies global IRF5 deficiency. Using a combination of bone marrow chimera and single-cell RNA-sequencing approaches, we examined the intrinsic role of IRF5 in controlling colonic MNP development. We demonstrate that IRF5 promotes differentiation of Ly6Chi monocytes into CD11c+ macrophages and controls the production of antimicrobial and inflammatory mediators by these cells. Thus, we identify IRF5 as a key transcriptional regulator of the colonic MNP system during intestinal inflammation.


Assuntos
Antígenos CD11/imunologia , Inflamação/imunologia , Fatores Reguladores de Interferon/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Helicobacter hepaticus/imunologia , Inflamação/patologia , Fatores Reguladores de Interferon/deficiência , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Fenótipo
16.
Proc Natl Acad Sci U S A ; 116(24): 11926-11935, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31147458

RESUMO

Caspase-8 is a key integrator of cell survival and cell death decisions during infection and inflammation. Following engagement of tumor necrosis factor superfamily receptors or certain Toll-like receptors (TLRs), caspase-8 initiates cell-extrinsic apoptosis while inhibiting RIPK3-dependent programmed necrosis. In addition, caspase-8 has an important, albeit less well understood, role in cell-intrinsic inflammatory gene expression. Macrophages lacking caspase-8 or the adaptor FADD have defective inflammatory cytokine expression and inflammasome priming in response to bacterial infection or TLR stimulation. How caspase-8 regulates cytokine gene expression, and whether caspase-8-mediated gene regulation has a physiological role during infection, remain poorly defined. Here we demonstrate that both caspase-8 enzymatic activity and scaffolding functions contribute to inflammatory cytokine gene expression. Caspase-8 enzymatic activity was necessary for maximal expression of Il1b and Il12b, but caspase-8 deficient cells exhibited a further decrease in expression of these genes. Furthermore, the ability of TLR stimuli to induce optimal IκB kinase phosphorylation and nuclear translocation of the nuclear factor kappa light chain enhancer of activated B cells family member c-Rel required caspase activity. Interestingly, overexpression of c-Rel was sufficient to restore expression of IL-12 and IL-1ß in caspase-8-deficient cells. Moreover, Ripk3-/-Casp8-/- mice were unable to control infection by the intracellular parasite Toxoplasma gondii, which corresponded to defects in monocyte recruitment to the peritoneal cavity, and exogenous IL-12 restored monocyte recruitment and protection of caspase-8-deficient mice during acute toxoplasmosis. These findings provide insight into how caspase-8 controls inflammatory gene expression and identify a critical role for caspase-8 in host defense against eukaryotic pathogens.


Assuntos
Caspase 8/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Inflamassomos/metabolismo , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia
17.
Methods Mol Biol ; 1745: 113-124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29476466

RESUMO

Flow cytometry is extensively used for the immune-profiling of leukocytes in tissue during homeostasis and inflammation. The multiparametric power of using fluorescently conjugated antibodies for specific surface and activation markers provides a comprehensive profile of immune cells. This chapter describes the identification and characterization of myeloid populations using flow cytometric analysis in an acute model of resolving inflammation. This model allows the examination of heterogenic populations across different systemic and tissue locations. We describe tissue processing, antibody staining, and analysis, which include a newly described viSNE tool to generate two-dimensional clustering within myeloid populations. We also reference the use of transgenic reporter mice on specific myeloid cells that provides enhanced specificity and profiling when defining myeloid heterogeneity.


Assuntos
Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Células Mieloides/metabolismo , Animais , Biomarcadores , Análise de Dados , Genes Reporter , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Monócitos/metabolismo , Neutrófilos/metabolismo , Coloração e Rotulagem
18.
Circulation ; 136(12): 1140-1154, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28698173

RESUMO

BACKGROUND: Myeloid cells are central to atherosclerotic lesion development and vulnerable plaque formation. Impaired ability of arterial phagocytes to uptake apoptotic cells (efferocytosis) promotes lesion growth and establishment of a necrotic core. The transcription factor interferon regulatory factor (IRF)-5 is an important modulator of myeloid function and programming. We sought to investigate whether IRF5 affects the formation and phenotype of atherosclerotic lesions. METHODS: We investigated the role of IRF5 in atherosclerosis in 2 complementary models. First, atherosclerotic lesion development in hyperlipidemic apolipoprotein E-deficient (ApoE-/-) mice and ApoE-/- mice with a genetic deletion of IRF5 (ApoE-/-Irf5-/-) was compared and then lesion development was assessed in a model of shear stress-modulated vulnerable plaque formation. RESULTS: Both lesion and necrotic core size were significantly reduced in ApoE-/-Irf5-/- mice compared with IRF5-competent ApoE-/- mice. Necrotic core size was also reduced in the model of shear stress-modulated vulnerable plaque formation. A significant loss of CD11c+ macrophages was evident in ApoE-/-Irf5-/- mice in the aorta, draining lymph nodes, and bone marrow cell cultures, indicating that IRF5 maintains CD11c+ macrophages in atherosclerosis. Moreover, we revealed that the CD11c gene is a direct target of IRF5 in macrophages. In the absence of IRF5, CD11c- macrophages displayed a significant increase in expression of the efferocytosis-regulating integrin-ß3 and its ligand milk fat globule-epidermal growth factor 8 protein and enhanced efferocytosis in vitro and in situ. CONCLUSIONS: IRF5 is detrimental in atherosclerosis by promoting the maintenance of proinflammatory CD11c+ macrophages within lesions and controlling the expansion of the necrotic core by impairing efferocytosis.


Assuntos
Aterosclerose/patologia , Fatores Reguladores de Interferon/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Células Cultivadas , Imuno-Histoquímica , Integrina beta3/metabolismo , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Linfonodos/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Fagocitose , Resistência ao Cisalhamento
19.
JCI Insight ; 1(20): e88689, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27942586

RESUMO

Hepatic fibrosis arises from inflammation in the liver initiated by resident macrophage activation and massive leukocyte accumulation. Hepatic macrophages hold a central position in maintaining homeostasis in the liver and in the pathogenesis of acute and chronic liver injury linked to fibrogenesis. Interferon regulatory factor 5 (IRF5) has recently emerged as an important proinflammatory transcription factor involved in macrophage activation under acute and chronic inflammation. Here, we revealed that IRF5 is significantly induced in liver macrophages from human subjects developing liver fibrosis from nonalcoholic fatty liver disease or hepatitis C virus infection. Furthermore, IRF5 expression positively correlated with clinical markers of liver damage, such as plasma transaminase and bilirubin levels. Interestingly, mice lacking IRF5 in myeloid cells (MKO) were protected from hepatic fibrosis induced by metabolic or toxic stresses. Transcriptional reprogramming of macrophages lacking IRF5 was characterized by immunosuppressive and antiapoptotic properties. Consequently, IRF5 MKO mice respond to hepatocellular stress by promoting hepatocyte survival, leading to complete protection from hepatic fibrogenesis. Our findings reveal a regulatory network, governed by IRF5, that mediates hepatocyte death and liver fibrosis in mice and humans. Therefore, modulating IRF5 function may be an attractive approach to experimental therapeutics in fibroinflammatory liver disease.


Assuntos
Inflamação/patologia , Fatores Reguladores de Interferon/metabolismo , Cirrose Hepática/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Animais , Apoptose , Bilirrubina/sangue , Feminino , Hepatócitos/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Transaminases/sangue
20.
Nat Rev Rheumatol ; 12(8): 472-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27383913

RESUMO

Macrophages are very important in the pathogenesis of rheumatoid arthritis (RA). The increase in the number of sublining macrophages in the synovium is an early hallmark of active rheumatic disease, and high numbers of macrophages are a prominent feature of inflammatory lesions. The degree of synovial macrophage infiltration correlates with the degree of joint erosion, and depletion of these macrophages from inflamed tissue has a profound therapeutic benefit. Research has now uncovered an unexpectedly high level of heterogeneity in macrophage origin and function, and has emphasized the role of environmental factors in their functional specialization. Although the heterogeneous populations of macrophages in RA have not been fully characterized, preliminary results in mouse models of arthritis have contributed to our understanding of the phenotype and ontogeny of synovial macrophages, and to deciphering the properties of monocyte-derived infiltrating and tissue-resident macrophages. Elucidating the molecular mechanisms that drive polarization of macrophages towards proinflammatory or anti-inflammatory phenotypes could lead to identification of signalling pathways that inform future therapeutic strategies.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Hematopoese , Macrófagos/fisiologia , Membrana Sinovial/patologia , Animais , Artrite Reumatoide/tratamento farmacológico , Diferenciação Celular , Descoberta de Drogas , Regulação da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Terapia de Alvo Molecular , Monócitos/efeitos dos fármacos , Monócitos/patologia , Monócitos/fisiologia , Proteínas Proto-Oncogênicas , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA