Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCO Precis Oncol ; 7: e2100498, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652667

RESUMO

PURPOSE: T-cell-mediated cytotoxicity is suppressed when programmed cell death-1 (PD-1) is bound by PD-1 ligand-1 (PD-L1) or PD-L2. Although PD-1 inhibitors have been approved for triple-negative breast cancer, the lower response rates of 25%-30% in estrogen receptor-positive (ER+) breast cancer will require markers to identify likely responders. The focus of this study was to evaluate whether PD-L2, which has higher affinity than PD-L1 for PD-1, is a predictor of early recurrence in ER+ breast cancer. METHODS: PD-L2 protein levels in cancer cells and stromal cells of therapy-naive, localized or locoregional ER+ breast cancers were measured retrospectively by quantitative immunofluorescence histocytometry and correlated with progression-free survival (PFS) in the main study cohort (n = 684) and in an independent validation cohort (n = 273). All patients subsequently received standard-of-care adjuvant therapy without immune checkpoint inhibitors. RESULTS: Univariate analysis of the main cohort revealed that high PD-L2 expression in cancer cells was associated with shorter PFS (hazard ratio [HR], 1.8; 95% CI, 1.3 to 2.6; P = .001), which was validated in an independent cohort (HR, 2.3; 95% CI, 1.1 to 4.8; P = .026) and remained independently predictive after multivariable adjustment for common clinicopathological variables (HR, 2.0; 95% CI, 1.4 to 2.9; P < .001). Subanalysis of the ER+ breast cancer patients treated with adjuvant chemotherapy (n = 197) revealed that high PD-L2 levels in cancer cells associated with short PFS in univariate (HR, 2.5; 95% CI, 1.4 to 4.4; P = .003) and multivariable analyses (HR, 3.4; 95% CI, 1.9 to 6.2; P < .001). CONCLUSION: Up to one third of treatment-naive ER+ breast tumors expressed high PD-L2 levels, which independently predicted poor clinical outcome, with evidence of further elevated risk of progression in patients who received adjuvant chemotherapy. Collectively, these data warrant studies to gain a deeper understanding of PD-L2 in the progression of ER+ breast cancer and may provide rationale for immune checkpoint blockade for this patient group.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Receptor de Morte Celular Programada 1 , Estudos Retrospectivos
2.
Sci Adv ; 7(38): eabc8145, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524841

RESUMO

Most breast cancer deaths are caused by estrogen receptor-α­positive (ER+) disease. Preclinical progress is hampered by a shortage of therapy-naïve ER+ tumor models that recapitulate metastatic progression and clinically relevant therapy resistance. Human prolactin (hPRL) is a risk factor for primary and metastatic ER+ breast cancer. Because mouse prolactin fails to activate hPRL receptors, we developed a prolactin-humanized Nod-SCID-IL2Rγ (NSG) mouse (NSG-Pro) with physiological hPRL levels. Here, we show that NSG-Pro mice facilitate establishment of therapy-naïve, estrogen-dependent PDX tumors that progress to lethal metastatic disease. Preclinical trials provide first-in-mouse efficacy of pharmacological hPRL suppression on residual ER+ human breast cancer metastases and document divergent biology and drug responsiveness of tumors grown in NSG-Pro versus NSG mice. Oncogenomic analyses of PDX lines in NSG-Pro mice revealed clinically relevant therapy-resistance mechanisms and unexpected, potently actionable vulnerabilities such as DNA-repair aberrations. The NSG-Pro mouse unlocks previously inaccessible precision medicine approaches for ER+ breast cancers.

3.
Ann Diagn Pathol ; 53: 151744, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33991784

RESUMO

OBJECTIVES: Assess the pathologic changes in the lungs of COVID-19 decedents and correlate these changes with demographic data, clinical course, therapies, and duration of illness. METHODS: Lungs of 12 consecutive COVID-19 decedents consented for autopsy were evaluated for gross and histopathologic abnormalities. A complete Ghon "en block" dissection was performed on all cases; lung weights and gross characteristics recorded. Immunohistochemical studies were performed to characterize lymphocytic infiltrates and to assess SARS-CoV-2 capsid protein. RESULTS: Two distinct patterns of pulmonary involvement were identified. Three of 12 cases demonstrated a predominance of acute alveolar damage (DAD) while 9 of 12 cases demonstrated a marked increase in intra-alveolar macrophages in a fashion resembling desquamative interstitial pneumonia or macrophage activation syndrome (DIP/MAS). Two patterns were correlated solely with a statistically significant difference in the duration of illness. The group exhibiting DAD had duration of illness of 5.7 days while the group with DIP/MAS had duration of illness of 21.5 days (t-test p = 0.014). CONCLUSIONS: The pulmonary pathology of COVID-19 patients demonstrates a biphasic pattern, an acute phase demonstrating DAD changes while the patients with a more prolonged course exhibit a different pattern that resembles DIP/MAS-like pattern. The potential mechanisms and clinical significance are discussed.


Assuntos
COVID-19/patologia , Imuno-Histoquímica/métodos , Doenças Pulmonares Intersticiais/patologia , Pulmão/patologia , Síndrome de Ativação Macrofágica/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/virologia , Proteínas do Capsídeo/metabolismo , Comorbidade , Feminino , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/virologia , Linfócitos/metabolismo , Linfócitos/patologia , Síndrome de Ativação Macrofágica/etiologia , Síndrome de Ativação Macrofágica/virologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , SARS-CoV-2/genética , Licença Médica
4.
Clin Cancer Res ; 24(24): 6355-6366, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097435

RESUMO

PURPOSE: Parathyroid hormone-related protein (PTHrP) is required for normal mammary gland development and biology. A PTHLH gene polymorphism is associated with breast cancer risk, and PTHrP promotes growth of osteolytic breast cancer bone metastases. Accordingly, current dogma holds that PTHrP is upregulated in malignant primary breast tumors, but solid evidence for this assumption is missing. EXPERIMENTAL DESIGN: We used quantitative IHC to measure PTHrP in normal and malignant breast epithelia, and correlated PTHrP levels in primary breast cancer with clinical outcome. RESULTS: PTHrP levels were markedly downregulated in malignant compared with normal breast epithelia. Moreover, low levels of nuclear localized PTHrP in cancer cells correlated with unfavorable clinical outcome in a test and a validation cohort of breast cancer treated at different institutions totaling nearly 800 cases. PTHrP mRNA levels in tumors of a third cohort of 737 patients corroborated this association, also after multivariable adjustment for standard clinicopathologic parameters. Breast cancer PTHrP levels correlated strongly with transcription factors Stat5a/b, which are established markers of favorable prognosis and key mediators of prolactin signaling. Prolactin stimulated PTHrP transcript and protein in breast cancer cell lines in vitro and in vivo, effects mediated by Stat5 through the P2 gene promoter, producing transcript AT6 encoding the PTHrP 1-173 isoform. Low levels of AT6, but not two alternative transcripts, correlated with poor clinical outcome. CONCLUSIONS: This study overturns the prevailing view that PTHrP is upregulated in primary breast cancers and identifies a direct prolactin-Stat5-PTHrP axis that is progressively lost in more aggressive tumors.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Núcleo Celular/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/genética , Modelos Animais de Doenças , Epitélio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Prognóstico , Prolactina/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
J Steroid Biochem Mol Biol ; 174: 192-200, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893623

RESUMO

Abiraterone is an inhibitor of CYP17A1 which is used for the treatment of castration resistant prostate cancer. Abiraterone is known to inhibit several drug metabolizing cytochrome P450 enzymes including CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, but its effects on steroid metabolizing P450 enzymes are not clear. In preliminary results, we had observed inhibition of CYP21A2 by 1µM abiraterone. Here we are reporting the effect of abiraterone on activities of CYP21A2 in human adrenal cells as well as with purified recombinant CYP21A2. Cells were treated with varying concentrations of abiraterone for 24h and CYP21A2 activity was measured using [3H] 17-hydroxyprogesterone as substrate. Whole steroid profile changes were determined by gas chromatography-mass spectrometry. Binding of abiraterone to purified CYP21A2 protein was measured spectroscopically. Computational docking was used to study the binding and interaction of abiraterone with CYP21A2. Abiraterone caused significant reduction in CYP21A2 activity in assays with cells and an inhibition of CYP21A2 activity was also observed in experiments using recombinant purified proteins. Abiraterone binds to CYP21A2 with an estimated Kd of 6.3µM. These inhibitory effects of abiraterone are at clinically used concentrations. A loss of CYP21A2 activity in combination with reduction of CYP17A1 activities by abiraterone could result in lower cortisol levels and may require monitoring for any potential adverse effects.


Assuntos
Androstenos/farmacologia , Antineoplásicos/farmacologia , Esteroide 21-Hidroxilase/antagonistas & inibidores , Linhagem Celular Tumoral , Escherichia coli/genética , Humanos , Masculino , Simulação de Acoplamento Molecular , Neoplasias da Próstata , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Esteroide 21-Hidroxilase/química , Esteroide 21-Hidroxilase/genética , Esteroide 21-Hidroxilase/metabolismo , Esteroides/metabolismo
6.
Sci Rep ; 7(1): 8652, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819133

RESUMO

Metformin is an antidiabetic drug, which inhibits mitochondrial respiratory-chain-complex I and thereby seems to affect the cellular metabolism in many ways. It is also used for the treatment of the polycystic ovary syndrome (PCOS), the most common endocrine disorder in women. In addition, metformin possesses antineoplastic properties. Although metformin promotes insulin-sensitivity and ameliorates reproductive abnormalities in PCOS, its exact mechanisms of action remain elusive. Therefore, we studied the transcriptome and the metabolome of metformin in human adrenal H295R cells. Microarray analysis revealed changes in 693 genes after metformin treatment. Using high resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS-NMR), we determined 38 intracellular metabolites. With bioinformatic tools we created an integrated pathway analysis to understand different intracellular processes targeted by metformin. Combined metabolomics and transcriptomics data analysis showed that metformin affects a broad range of cellular processes centered on the mitochondrium. Data confirmed several known effects of metformin on glucose and androgen metabolism, which had been identified in clinical and basic studies previously. But more importantly, novel links between the energy metabolism, sex steroid biosynthesis, the cell cycle and the immune system were identified. These omics studies shed light on a complex interplay between metabolic pathways in steroidogenic systems.


Assuntos
Perfilação da Expressão Gênica , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Esteroides/biossíntese , Transcriptoma , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Biomarcadores , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Metformina/farmacologia , Modelos Biológicos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo
7.
Biochem Biophys Res Commun ; 477(4): 1005-1010, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27395338

RESUMO

The orteronel, abiraterone and galeterone, which were developed to treat castration resistant prostate cancer, inhibit 17,20 lyase activity but little is known about their effects on adrenal androgen biosynthesis. We studied the effect of several inhibitors and found that orteronel was selective towards 17,20 lyase activity than abiraterone and galeterone. Gene expression analysis showed that galeterone altered the expression of HSD3B2 but orteronel did not change the expression of HSD3B2, CYP17A1 and AKR1C3. The CYP19A1 activity was not inhibited except by compound IV which lowered activity by 23%. Surprisingly abiraterone caused complete blockade of CYP21A2 activity. Analysis of steroid metabolome by gas chromatography - mass spectrometry revealed changes in steroid levels caused by different inhibitors. We can conclude that orteronel is a highly specific inhibitor of 17,20 lyase activity. The discovery of these specific drug actions on steroidogenic enzyme activities would be valuable for understanding the regulation of androgens.


Assuntos
Glândulas Suprarrenais/metabolismo , Androgênios/biossíntese , Antineoplásicos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/efeitos dos fármacos , Androstadienos/administração & dosagem , Androstenos/administração & dosagem , Benzimidazóis/administração & dosagem , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Imidazóis/administração & dosagem , Masculino , Naftalenos/administração & dosagem
8.
Biochem Pharmacol ; 102: 20-33, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26498719

RESUMO

Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.


Assuntos
Córtex Suprarrenal/metabolismo , Androgênios/biossíntese , Ensaios de Triagem em Larga Escala/métodos , Androgênios/genética , Animais , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Transdução de Sinais/fisiologia
9.
Eur J Endocrinol ; 173(5): K1-K12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26290012

RESUMO

CONTEXT: 3ß-hydroxysteroid dehydrogenase deficiency (3ßHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3ßHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis histology, fertility and malignancy risk. OBJECTIVE: To describe the molecular genetics, the steroid biochemistry, the (immuno-)histochemistry and the clinical implications of a loss-of-function HSD3B2 mutation. METHODS: Biochemical, genetic and immunohistochemical investigations on human biomaterials. RESULTS: A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene revealed a homozygous c.687del27 deletion. At pubertal age, he showed some virilization of the external genitalia and some sex steroid metabolites appeared likely through conversion of precursors secreted by the testis and converted by unaffected HSD3B1 in peripheral tissues. However, he also developed enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS: The testis with HSD3B2 deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/patologia , Infertilidade Masculina/genética , Puberdade/genética , Testículo/patologia , Humanos , Recém-Nascido , Masculino , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA