Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 9(12): 1985-1998, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36369764

RESUMO

OBJECTIVES: Peripheral neuropathy is a relevant dose-limiting adverse event that can affect up to 90% of oncologic patients with colorectal cancer receiving oxaliplatin treatment. The severity of neurotoxicity often leads to dose reduction or even premature cessation of chemotherapy. Unfortunately, the limited knowledge about the molecular mechanisms related to oxaliplatin neurotoxicity leads to a lack of effective treatments to prevent the development of this clinical condition. In this context, the present work aimed to determine the exact molecular mechanisms involved in the development of oxaliplatin neurotoxicity in a murine model to try to find new therapeutical targets. METHODS: By single-cell RNA sequencing (scRNA-seq), we studied the transcriptomic profile of sensory neurons and satellite glial cells (SGC) of the Dorsal Root Ganglia (DRG) from a well-characterized mouse model of oxaliplatin neurotoxicity. RESULTS: Analysis of scRNA-seq data pointed to modulation of inflammatory processes in response to oxaliplatin treatment. In this line, we observed increased levels of NF-kB p65 protein, pro-inflammatory cytokines, and immune cell infiltration in DRGs and peripheral nerves of oxaliplatin-treated mice, which was accompanied by mechanical allodynia and decrease in sensory nerve amplitudes. INTERPRETATION: Our data show that, in addition to the well-described DNA damage, oxaliplatin neurotoxicity is related to an exacerbated pro-inflammatory response in DRG and peripheral nerves, and open new insights in the development of anti-inflammatory strategies as a treatment for preventing peripheral neuropathy induced by oxaliplatin.


Assuntos
Antineoplásicos , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Oxaliplatina/toxicidade , Compostos Organoplatínicos/toxicidade , Antineoplásicos/toxicidade , Síndromes Neurotóxicas/etiologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Gânglios Espinais/metabolismo
2.
Exp Neurol ; 354: 114069, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35398149

RESUMO

Neurons of the peripheral nervous system retain the intrinsic capability of regenerate their axons after injury, by triggering a complex activation response. This genetic switch is dependent of signals from the injured axon. Schwann cells (SCs) in the distal stump of an injured nerve also play an active role in the local regulation of axonal programs, by using cell-to-cell contacts but also secreted signals, the so-called secretome. Secretome contains all the proteins (cytokines, growth factors and others) secreted by the cell and includes extracellular vesicles. The released vesicles can transport signaling proteins and both coding and regulatory RNAs, thus facilitating multilevel communication. It is nowadays clear that secretome of SCs is fundamental to both orchestrate Wallerian degeneration and to sustain axonal regeneration. Therefore, the use of secretome has emerged as an alternative to cell therapy in the field of tissue regeneration. In fact, separate components of SC secretome have been extensively used in experimental models to enhance peripheral nerve regeneration after injury. However, the most used secretome in neural therapies has been the one derived from mesenchymal (MSC) or other derived stem cells. In fact, the effects of cell therapy with MSCs have been mainly associated with the secretion of bioactive molecules and extracellular vesicles, which constitute their secretome. In this review, we first describe the role of SC and macrophage secretomes on Wallerian degeneration and axonal regeneration after peripheral nerve injury. Then, we review the different works reported in the literature that have used secretomes of SCs or MSCs in the treatment of peripheral nerve injuries in experimental models, to highlight the use of secretomes as a promising cell-free therapeutic approach, that reduces some of the risks associated with the use of cells, such as tumor formation or rejection.


Assuntos
Traumatismos dos Nervos Periféricos , Degeneração Walleriana , Humanos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/patologia , Nervos Periféricos/patologia , Células de Schwann/metabolismo , Secretoma
3.
Neuro Oncol ; 23(1): 88-99, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32597980

RESUMO

BACKGROUND: Cisplatin-induced peripheral neuropathy (CIPN) is a frequent serious dose-dependent adverse event that can determine dosage limitations for cancer treatment. CIPN severity correlates with the amount of platinum detected in sensory neurons of the dorsal root ganglia (DRG). However, the exact pathophysiology of CIPN is poorly understood, so the chance of developing neuroprotective treatment is reduced. The aim of this study was to determine the exact mechanisms involved in CIPN development. METHODS: By single-cell RNA-sequencing (scRNAseq), we have studied the transcriptomic profile of DRG sensory neurons from a well-characterized neurophysiological mouse model of CIPN. RESULTS: Gene Ontology analysis of the scRNAseq data indicated that cisplatin treatment induces the upregulation of biological pathways related to DNA damage response (DDR) in the DRG neuronal population. Moreover, DRG neurons also upregulated the Cdkn1a gene, confirmed later by the measurement of its protein product p21. While apoptosis activation pathways were not observed in DRG sensory neurons of cisplatin-treated mice, these neurons did express several senescence hallmarks, including senescence-associated ß-galactosidase, phospho-H2AX, and nuclear factor kappa B (Nfkb)-p65 proteins. CONCLUSIONS: In this study, we determined that after cisplatin-induced DNA damage, p21 appears as the most relevant downstream factor of the DDR in DRG sensory neurons in vivo, which survive in a nonfunctional senescence-like state.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Animais , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Gânglios Espinais , Camundongos , Neurônios , Doenças do Sistema Nervoso Periférico/induzido quimicamente
5.
J Neurosurg Spine ; 28(1): 109-118, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29125428

RESUMO

OBJECTIVE Artificial nerve guides are being developed to substitute for autograft repair after peripheral nerve injuries. However, the use of conduits is limited by the length of the gap that needs to be bridged, with the success of regeneration highly compromised in long gaps. Addition of aligned proregenerative cells and extracellular matrix (ECM) components inside the conduit can be a good strategy to achieve artificial grafts that recreate the natural environment offered by a nerve graft. The purpose of this study was to functionalize chitosan devices with different cell types to support regeneration in limiting gaps in the rat peripheral nerve. METHODS The authors used chitosan devices combined with proteins of the ECM and cells in a rat model of sciatic nerve injury. Combinations of fibronectin and laminin with mesenchymal stem cells (MSCs) or Schwann cells (SCs) were aligned within tethered collagen-based gels, which were placed inside chitosan tubes that were then used to repair a critical-size gap of 15 mm in the rat sciatic nerve. Electrophysiology and algesimetry tests were performed to analyze functional recovery during the 4 months after injury and repair. Histological analysis was performed at the midlevel and distal level of the tubes to assess the number of regenerated myelinated fibers. RESULTS Functional analysis demonstrated that SC-aligned scaffolds resulted in 100% regeneration success in a 15-mm nerve defect in this rat model. In contrast, animals that underwent repair with MSC-aligned constructs had only 90% regeneration success, and those implanted with acellular bridges had only 75% regeneration success. CONCLUSIONS These results indicate that the combination of chitosan conduits with ECM-enriched cellular gels represents a good alternative to the use of autografts for repairing long nerve gaps.


Assuntos
Fibronectinas , Laminina , Células-Tronco Mesenquimais/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Células de Schwann/fisiologia , Nervo Isquiático/lesões , Animais , Quitosana , Modelos Animais de Doenças , Matriz Extracelular , Feminino , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Wistar , Alicerces Teciduais
6.
Neuroscience ; 340: 188-200, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27984178

RESUMO

After peripheral nerve injury, transected fibers distal to the lesion are disconnected from the neuronal body. This results in target denervation but also massive stripping of the central synapses of axotomized motoneurons, disrupting spinal circuits. Even when axonal regeneration is successful, the non-specific target reinnervation and the limited rebuilding of spinal circuits impair functional recovery. Therefore, strategies aimed to preserve spinal circuits after nerve lesions may improve the functional outcome. Activity-dependent therapy in the form of early treadmill running reduces synaptic stripping, mainly of excitatory synapses, and the disorganization of perineuronal nets (PNNs) on axotomized motoneurons. The mechanism underlying these effects remains unknown, although the benefits of exercise are often attributed to an increase in the neurotrophin brain-derived neurotrophic factor (BDNF). In this study, tropomyosin-related kinase (TrkB) agonist and antagonist were administered to rats subjected to sciatic nerve injury in order to shed light on the role of BDNF. The maintenance of synapses on axotomized motoneurons induced by treadmill running was partially dependent on TrkB activation. Treatment with the TrkB agonist at a low dose, but not at a high dose, prevented the decrease of excitatory glutamatergic synapses, and both doses increased the density of inhibitory synapses. TrkB inactivation counteracted only some of the positive effects exerted by exercise after nerve injury, such as maintenance of excitatory synapses surrounding motoneurons. Therefore, specific regimes of physical exercise are a better strategy to attenuate the alterations that motoneurons suffer after axotomy than pharmacological modulation of the TrkB pathway.


Assuntos
Neurônios Motores/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptor trkB/metabolismo , Corrida/fisiologia , Medula Espinal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Vértebras Lombares , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Nociceptividade/fisiologia , Limiar da Dor/fisiologia , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptor trkB/agonistas , Receptor trkB/antagonistas & inibidores , Receptor trkC/metabolismo , Nervo Isquiático/lesões , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
7.
Neurotoxicology ; 55: 58-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27211850

RESUMO

Bortezomib is a proteasome inhibitor with a remarkable antitumor activity, used in the clinic as first line treatment for multiple myeloma. One hallmark of bortezomib mechanism of action in neoplastic cells is the inhibition of nuclear factor kappa B (NFκB), a transcription factor involved in cell survival and proliferation. Bortezomib-induced peripheral neuropathy is a dose-limiting toxicity that often requires adjustment of treatment and affects patient's prognosis and quality of life. Since disruption of NFκB pathway can also affect neuronal survival, we assessed the role of NFκB in bortezomib-induced neuropathy by using a transgenic mouse that selectively provides blockage of the NFκB pathway in neurons. Interestingly, we observed that animals with impaired NFκB activation developed significantly less severe neuropathy than wild type animals, with particular preservation of large myelinated fibers, thus suggesting that neuronal NFκB activation plays a positive role in bortezomib induced neuropathy and that bortezomib treatment might induce neuropathy by inhibiting NFκΒ in non-neuronal cell types or by targeting other signaling pathways. Therefore, inhibition of NFκB might be a promising strategy for the cotreatment of cancer and neuropathy.


Assuntos
Bortezomib , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/genética , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Peptídeos/uso terapêutico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Fosforilação/genética , Ubiquitina Tiolesterase/metabolismo
8.
Biomaterials ; 76: 33-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26517563

RESUMO

Biosynthetic nerve grafts are developed in order to complement or replace autologous nerve grafts for peripheral nerve reconstruction. Artificial nerve guides currently approved for clinical use are not widely applied in reconstructive surgery as they still have limitations especially when it comes to critical distance repair. Here we report a comprehensive analysis of fine-tuned chitosan nerve guides (CNGs) enhanced by introduction of a longitudinal chitosan film to reconstruct critical length 15 mm sciatic nerve defects in adult healthy Wistar or diabetic Goto-Kakizaki rats. Short and long term investigations demonstrated that the CNGs enhanced by the guiding structure of the introduced chitosan film significantly improved functional and morphological results of nerve regeneration in comparison to simple hollow CNGs. Importantly, this was detectable both in healthy and in diabetic rats (short term) and the regeneration outcome almost reached the outcome after autologous nerve grafting (long term). Hollow CNGs provide properties likely leading to a wider clinical acceptance than other artificial nerve guides and their performance can be increased by simple introduction of a chitosan film with the same advantageous properties. Therefore, the chitosan film enhanced CNGs represent a new generation medical device for peripheral nerve reconstruction.


Assuntos
Quitosana/uso terapêutico , Neuropatias Diabéticas/tratamento farmacológico , Regeneração Nervosa/efeitos dos fármacos , Animais , Quitosana/farmacologia , Neuropatias Diabéticas/fisiopatologia , Ratos , Ratos Wistar
9.
Neurotox Res ; 27(4): 430-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25588865

RESUMO

The proteasome inhibitor bortezomib is nowadays first line treatment for multiple myeloma. One of the most significant adverse events is peripheral neuropathy, mainly involving sensory nerve fibers that can lead to withdrawal of treatment. Here we develop an in vitro model to compare the effects of bortezomib on primary sensory neurons and Schwann cells of adult mice. We observed that sensory neurons were more susceptible to bortezomib, and their viability was reduced at a concentration of 6 nM, that only affected Schwann cell proliferation but not survival. At concentration higher than 8 nM Schwann cell viability was also compromised. Already at low concentrations, surviving neurons presented alterations in neurite outgrowth. Neurites were shorter and had dystrophic appearance, with alterations in neurofilament staining. However, neurites were able to regrow after removing bortezomib from the medium, thus indicating reversibility of the neurotoxicity. We confirmed in vivo that bortezomib produced alterations in neurofilaments at early stages of the treatment. After an accumulated dose of 2 mg/kg bortezomib, dorsal root ganglia neurons of treated animals showed accumulation of neurofilament in the soma. To evaluate if this accumulation was related with alterations in axonal transport, we tested the ability of sensory neurons to retrogradely transport a retrotracer applied at the distal nerve. Treated animals showed a lower amount of retrotracer in the soma 24 h after its application to the tibial nerve, therefore suggesting that axonal transport was affected by bortezomib.


Assuntos
Antineoplásicos/toxicidade , Bortezomib/toxicidade , Gânglios Espinais/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Transporte Axonal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Gânglios Espinais/ultraestrutura , Camundongos , Neuritos/efeitos dos fármacos , Células Receptoras Sensoriais/ultraestrutura
10.
Neurotoxicology ; 43: 28-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24525285

RESUMO

In the last ten years, the proteasome has become one of the most attractive targets for the treatment of several cancer malignancies. Like other types of antineoplastic agents, proteasome inhibitors cause toxic peripheral neuropathy, which indeed is one of the limiting side effects of these treatments, and which thus curtails its potential effectiveness. Bortezomib was the first proteasome inhibitor approved for clinical use and is currently the first line treatment for multiple myeloma. The incidence of neuropathy induced by bortezomib is around 30-60%. Although the neurotoxic mechanisms are not completely understood, experimental studies suggest that aggresome formation, endoplasmic reticulum stress, mitotoxicity, inflammatory response, and DNA damage could contribute to this neurotoxicity. Additionally, the second generation of proteasome inhibitors, headed by carfilzomib, is currently being developed in order to reduce the toxic profile, with promising results. However, more extensive clinical experience and further experimental research are needed in order to determine the potential benefits of the second generation over bortezomib. The present review summarizes the main clinical features and mechanistic events related to the neuropathy induced by proteasome-inhibitors.


Assuntos
Antineoplásicos/efeitos adversos , Síndromes Neurotóxicas/etiologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Inibidores de Proteassoma/efeitos adversos , Animais , Humanos
11.
Exp Neurol ; 253: 165-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24406455

RESUMO

Bortezomib (BTZ), a proteasome inhibitor, is an effective anti-neoplastic drug used in the treatment of multiple myeloma and mantle cell lymphoma. However, it can induce a reversible peripheral neuropathy that may lead to treatment discontinuation. The mechanism through which BTZ exerts toxic effects in peripheral neurons is not clear. Release of proinflammatory cytokines after nerve damage can induce neurodegeneration, but the effects of BTZ on cytokine expression in neurons are unknown, although BTZ modulates the expression of cytokines, such as TNF-α and IL-6, in tumor cells. The aim of this study was to evaluate the expression and the role of these cytokines on the course of BTZ induced neuropathy in mice. IL-6, TNF-α, TGF-ß1 and IL-1ß were up-regulated in dorsal root ganglia but TNF-α and IL-6 increased faster and higher. Then, we studied the potential neuroprotective effect of selective antibodies anti-TNF-α and anti-IL-6 on the evolution of the neuropathy. Treatment with anti-TNF-α but not with anti-IL-6 significantly prevented the decrease of sensory nerve action potentials amplitude and the loss of myelinated and unmyelinated fibers. We conclude that monoclonal antibodies directed against TNF-α may be a suitable neuroprotective therapy against the neurotoxicity induced by BTZ.


Assuntos
Anticorpos/uso terapêutico , Ácidos Borônicos/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Inibidores de Proteassoma/toxicidade , Pirazinas/toxicidade , Fator de Necrose Tumoral alfa/imunologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bortezomib , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Nervo Isquiático/fisiopatologia , Células Receptoras Sensoriais/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
12.
J Peripher Nerv Syst ; 18(1): 30-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23521641

RESUMO

Peripheral nerve injury triggers the activation of the small GTPase RhoA in spinal motor and peripheral sensory neurons. C3 transferase, an exoenzyme produced by Clostridium botulinum that inactivates RhoA by ADP-ribosylation, has been successfully applied in central nervous system (CNS) lesion models to facilitate regeneration functionally and morphologically. Until now it has not been demonstrated if C3bot exerts positive effects on peripheral axon regeneration as well. In organotypic spinal cord preparations, C3bot reduced axonal growth of motoneurons, while no effect on sensory axon outgrowth from dorsal root ganglia (DRG) explants was observed. Enzymatically inactive C3E174Q was ineffective in both culture models. Spinal cord slices exhibited a significant increase in microglia/macrophages after treatment with C3bot suggesting an inflammatory component in the inhibition of axon growth. C3bot or C3E174Q were then applied into conduits implanted after transection of the sciatic nerve in rats. Functional evaluation by electrophysiology, nociception, and walking track tests did not show any significant difference between groups with active or mutant C3E174Q . Transmission electron microscopy of the regenerated nerves revealed no significant differences in the number of myelinated and unmyelinated axons 6 weeks after surgery. Compared to the CNS, the functional significance of RhoA may be limited during nerve regeneration in a growth-promoting environment.


Assuntos
ADP Ribose Transferases/farmacologia , Toxinas Botulínicas/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Neuropatia Ciática/patologia , Neuropatia Ciática/fisiopatologia , ADP Ribose Transferases/genética , Animais , Animais Recém-Nascidos , Axotomia , Toxinas Botulínicas/genética , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Mutação/genética , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Neuropatia Ciática/tratamento farmacológico , Medula Espinal/citologia , Fatores de Tempo
13.
Neurotherapeutics ; 10(2): 354-68, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23440700

RESUMO

Ventral spinal root avulsion causes complete denervation of muscles in the limb and also progressive death of segmental motoneurons (MN) leading to permanent paralysis. The chances for functional recovery after ventral root avulsion are very poor owing to the loss of avulsed neurons and the long distance that surviving neurons have to re-grow axons from the spinal cord to the corresponding targets. Following unilateral avulsion of L4, L5 and L6 spinal roots in adult rats, we performed an intraspinal transplant of mesenchymal stem cells (MSC) and surgical re-implantation of the avulsed roots. Four weeks after avulsion the survival of MN in the MSC-treated animals was significantly higher than in vehicle-injected rats (45% vs. 28%). Re-implantation of the avulsed roots in the injured spinal cord allowed the regeneration of motor axons. By combining root re-implantation and MSC transplant the number of surviving MN at 28 days post-injury was higher (60%) than in re-implantation alone animals (46%). Electromyographic tests showed evidence of functional re-innervation of anterior tibialis and gastrocnemius muscles by the regenerated motor axons only in rats with the combined treatment. These results indicate that MSC are helpful in enhancing neuronal survival and increased the regenerative growth of injured axons. Surgical re-implantation and MSC grafting combined had a synergic neuroprotective effect on MN and on axonal regeneration and muscle re-innervation after spinal root avulsion.


Assuntos
Axônios/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Regeneração Nervosa/fisiologia , Doenças do Sistema Nervoso/prevenção & controle , Raízes Nervosas Espinhais , Animais , Comportamento Animal/fisiologia , Contagem de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Neuritos/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
14.
Mol Neurobiol ; 47(2): 770-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23275175

RESUMO

In this study, we screened in vitro the different capabilities of trophic factors with promising effect for enhancing selective regeneration and thus promoting specific reinnervation of target organs after peripheral nerve regeneration. We found that FGF-2 (18 kDa) was the trophic factor that exerted the most selective effect in promoting neurite outgrowth of spinal motoneurons both in terms of elongation and arborization. The mechanism underlying this effect on neuritogenesis seems related to FGF-2 enhancing the interaction between FGFR-1 and PSA-NCAM. The interaction of these two receptors is important during the early stages of neuritogenesis and pathfinding, while integrin alpha7B subunit seems to play a role during neurite stabilization.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Neurônios Motores/fisiologia , Neuritos/fisiologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Fator 2 de Crescimento de Fibroblastos/fisiologia , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia
15.
J Peripher Nerv Syst ; 16(3): 199-212, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22003935

RESUMO

Pre-existing neuropathy, a not uncommon feature in oncologic patients, is a potential but non-confirmed risk factor to develop early or severe chemotherapy-induced neuropathy. The main goal of this study is to evaluate the role of pre-existing neuropathy induced by vincristine (VNC) or bortezomib (BTZ) as a risk factor to develop more severe BTZ-induced neuropathy in a mouse model. VNC, at doses of 1 and 1.5 mg/kg given twice per week for 4 weeks, induced a moderate and severe sensory-motor neuropathy, primarily axonal, with predominant involvement of myelinated sensory axons. The neuropathy induced by BTZ at dose of 1 mg/kg given twice per week for 6 weeks was a mild axonal sensory neuropathy involving myelinated and unmyelinated fibers. The neuropathy in mice previously treated and retreated with the same schedule of BTZ after 4 weeks of washout period was similar in profile and severity to the one observed after the first treatment. When basal neuropathy was classified as moderate (most of BTZ-treated animals) or severe (all VNC-treated animals and two BTZ-treated animals), there was a more marked decline in sensory nerve function during BTZ retreatment in the group with basal severe neuropathy (-86%) than in the groups with basal mild (-57%) or without neuropathy (-52%; p < 0.001). Histopathological findings supported the functional results. Therefore, this study shows that the presence of a severe neuropathy previous to treatment with an antitumoral agent, such as BTZ, results in a more marked involvement of peripheral nerves.


Assuntos
Antineoplásicos/toxicidade , Ácidos Borônicos/toxicidade , Síndromes Neurotóxicas/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Pirazinas/toxicidade , Animais , Bortezomib , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Camundongos , Síndromes Neurotóxicas/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Fatores de Risco
16.
J Peripher Nerv Syst ; 16(3): 213-27, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22003936

RESUMO

The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice.


Assuntos
Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/patologia , Regeneração Nervosa , Aldeído Redutase/sangue , Animais , Western Blotting , Diabetes Mellitus Experimental/metabolismo , Eletromiografia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Compressão Nervosa
17.
Exp Neurol ; 223(2): 599-608, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20188093

RESUMO

Bortezomib, a proteasome inhibitor, is an antineoplastic drug to treat multiple myeloma and mantle cell lymphoma. Its most clinically significant adverse event is peripheral sensory neuropathy. Our objective was to characterize the neuropathy induced by bortezomib in a mouse model. Two groups were used; one group received vehicle solution and another bortezomib (1mg/kg/twice/week) for 6weeks (total dose as human schedule). Tests were performed during treatment and for 4weeks post dosing to evaluate electrophysiological, autonomic, pain sensibility and sensory-motor function changes. At the end of treatment and after washout, sciatic and tibial nerves, dorsal ganglia and intraepidermal innervation were analyzed. Bortezomib induced progressive significant decrease of sensory action potential amplitude, mild reduction of sensory velocities without effect in motor conductions. Moreover, it significantly increased pain threshold and sensory-motor impairment at 6weeks. According to these data, histopathological findings shown a mild reduction of myelinated (-10%; p=0.001) and unmyelinated fibers (-27%; p=0.04), mostly involving large and C fibers, with abnormal vesicular inclusion body in unmyelinated axons. Neurons were also involved as shown by immunohistochemical phenotypic switch. After washout, partial recovery was observed in functional, electrophysiological and histological analyses. These results suggest that axon and myelin changes might be secondary to an initial dysfunctional neuronopathy.


Assuntos
Antineoplásicos/toxicidade , Ácidos Borônicos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Inibidores de Proteases/toxicidade , Pirazinas/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Bortezomib , Eletrofisiologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/patologia , Fibras Nervosas Amielínicas/ultraestrutura , Condução Nervosa/efeitos dos fármacos , Dor/induzido quimicamente , Dor/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Pele/inervação , Nervo Tibial/efeitos dos fármacos , Nervo Tibial/patologia
18.
Neurosurgery ; 65(4 Suppl): A132-44, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19927058

RESUMO

OBJECTIVE: Injured peripheral nerves regenerate at very slow rates. Therefore, proximal injury sites such as the brachial plexus still present major challenges, and the outcomes of conventional treatments remain poor. This is in part attributable to a progressive decline in the Schwann cells' ability to provide a supportive milieu for the growth cone to extend and to find the appropriate target. These challenges are compounded by the often considerable delay of regeneration across the site of nerve laceration. Recently, low-frequency electrical stimulation (as brief as an hour) has shown promise, as it significantly accelerated regeneration in animal models through speeding of axon growth across the injury site. METHODS: To test whether this might be a useful clinical tool, we carried out a randomized controlled trial in patients who had experienced substantial axonal loss in the median nerve owing to severe compression in the carpal tunnel. To further elucidate the potential mechanisms, we applied rolipram, a cyclic adenosine monophosphate agonist, to rats after axotomy of the femoral nerve. RESULTS: We demonstrated that effects similar to those observed in animal studies could also be attained in humans. The mechanisms of action of electrical stimulation likely operate through up-regulation of neurotrophic factors and cyclic adenosine monophosphate. Indeed, the application of rolipram significantly accelerated nerve regeneration. CONCLUSION: With new mechanistic insights into the influencing factors of peripheral nerve regeneration, the novel treatments described above could form part of an armament of synergistic therapies that could make a meaningful difference to patients with peripheral nerve injuries.


Assuntos
AMP Cíclico/agonistas , Terapia por Estimulação Elétrica/métodos , Cones de Crescimento/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/terapia , Animais , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Cones de Crescimento/metabolismo , Humanos , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Rolipram/farmacologia , Rolipram/uso terapêutico , Resultado do Tratamento
19.
Exp Neurol ; 219(1): 258-65, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19500575

RESUMO

Although injured peripheral axons are able to regenerate, functional recovery is usually poor after nerve transection. In this study we aim to elucidate the role of neuronal activity, induced by nerve electrical stimulation and by exercise, in promoting axonal regeneration and modulating plasticity in the spinal cord after nerve injury. Four groups of adult rats were subjected to sciatic nerve transection and suture repair. Two groups received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h, immediately after injury (ESa) or during 4 weeks (1 h daily; ESc). A third group (ES+TR) received 1 h electrical stimulation and was submitted to treadmill running during 4 weeks (5 m/min, 2 h daily). A fourth group performed only exercise (TR), whereas an untreated group served as control (C). Nerve conduction, H reflex and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. Histological analysis was made at the end of the follow-up. Groups that received acute ES and/or were forced to exercise in the treadmill showed higher levels of muscle reinnervation and increased numbers of regenerated myelinated axons when compared to control animals or animals that received chronic ES. Combining ESa with treadmill training significantly improved muscle reinnervation during the initial phase. The facilitation of the monosynaptic H reflex in the injured limb was reduced in all treated groups, suggesting that the maintenance of activity helps to prevent the development of hyperreflexia.


Assuntos
Terapia por Estimulação Elétrica/métodos , Terapia por Exercício/métodos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos , Doenças do Sistema Nervoso Periférico/terapia , Animais , Axotomia , Modelos Animais de Doenças , Teste de Esforço , Feminino , Cones de Crescimento/fisiologia , Reflexo H/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Medição da Dor , Nervos Periféricos/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Condicionamento Físico Animal/métodos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Reflexo Anormal/fisiologia , Neuropatia Ciática/fisiopatologia , Neuropatia Ciática/terapia , Resultado do Tratamento
20.
Exp Neurol ; 211(1): 180-93, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18316076

RESUMO

We have studied whether electrical stimulation immediately after nerve injury may enhance axonal regeneration and modulate plastic changes at the spinal cord level underlying the appearance of hyperreflexia. Two groups of adult rats were subjected to sciatic nerve section followed by suture repair. One group (ES) received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h after injury. A second group served as control (C). Nerve conduction, H reflex, motor evoked potentials, and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. The electrophysiological results showed higher levels of reinnervation, and histological results a significantly higher number of regenerated myelinated fibers in the distal tibial nerve in group ES in comparison with group C. The monosynaptic H reflex was facilitated in the injured limb, to a higher degree in group C than in group ES. The amplitudes of motor evoked potentials were similar in both groups, although the MEP/M ratio was increased in group C compared to group ES, indicating mild central motor hyperexcitability. Immunohistochemical labeling of sensory afferents in the spinal cord dorsal horn showed prevention of the reduction in expression of substance P at one month postlesion in group ES. In conclusion, brief electrical stimulation applied after sciatic nerve injury promotes axonal regeneration over a long distance and reduces facilitation of spinal motor responses.


Assuntos
Estimulação Elétrica/métodos , Regeneração Nervosa/efeitos da radiação , Plasticidade Neuronal/efeitos da radiação , Neuropatia Ciática , Medula Espinal/fisiopatologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Modelos Animais de Doenças , Eletromiografia , Potencial Evocado Motor/efeitos da radiação , Feminino , Hiperalgesia/fisiopatologia , Lectinas/metabolismo , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos da radiação , Recuperação de Função Fisiológica/efeitos da radiação , Reflexo/efeitos da radiação , Neuropatia Ciática/patologia , Neuropatia Ciática/fisiopatologia , Neuropatia Ciática/terapia , Medula Espinal/efeitos da radiação , Substância P/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA