Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Eur J Med Chem ; 250: 115193, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36774698

RESUMO

Eudistomin Y is a novel class of ß-carbolines of marine origin with potential antiproliferation activity against MDA-MB-231 cells (triple-negative breast carcinoma). However, the subcellular target or the detailed mechanism against cancer cell proliferation has not yet been identified. In this study, based on its special structure, a novel series of Eudistomin Y fluorescent derivatives were designed and synthesized by enhancing the electron-donor effect of N-9 to endow it with fluorescent properties through N-alkylation. The structure-activity relationships against the proliferation of cancer cells were also analyzed. A quarter of Eudistomin Y derivatives showed much higher potency against cancer cell proliferation than the original Eudistomin Y1. Fluorescent derivative H1k with robust antiproliferative activity could arrest MDA-MB-231 cells in the G2-M phase. The subcellular localization studies of the probes, including H1k, and Eudistomin Y1 were performed in MDA-MB-231 cells, and the co-localization and competitive inhibition assays revealed their lysosome-specific localization. Moreover, H1k could dose-dependently increase the autophagy signal and downregulate the expression of cyclin-dependent kinase (CDK1) and cyclin B1 which principally regulated the G2-M transition. Furthermore, the specific autophagy inhibitor 3-methyladenine significantly inhibited the H1k-triggered antiproliferation of cancer cells and the downregulation of CDK1 and cyclin B1. Overall, the lysosome is identified as the subcellular target of Eudistomin Y for the first time, and derivative H1k showed robust antiproliferative activity against MDA-MB-231 cells by decreasing Cyclin B1-CDK1 complex via a lysosome-dependent pathway.


Assuntos
Antineoplásicos , Ciclina B1/farmacologia , Divisão Celular , Antineoplásicos/farmacologia , Proliferação de Células , Quinases Ciclina-Dependentes , Linhagem Celular Tumoral , Apoptose
2.
Biosci Biotechnol Biochem ; 86(10): 1405-1412, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35876657

RESUMO

Ethylene (ET) and jasmonate (JA) are plant hormones that act synergistically to regulate plant development and defense against necrotrophic fungi infections, and antagonistically in response to wounds and apical hook formation. Previous studies revealed that the coordination of these responses is due to dynamic protein-protein interactions (PPI) between their master transcription factors (TFs) EIN3/EIL1 and MYC in ET and JA signaling, respectively. In addition, both TFs are activated via interactions with the same transcriptional mediator MED25, which upregulates downstream gene expression. Herein, we analyzed the PPI between EIN3/EIL1 and MED25, and as with the PPI between MYC3 and MED25, found that the short binding domain of MED25 (CMIDM) is also responsible for the interaction with EIN3/EIL1 - a finding which suggests that both TFs compete for binding with MED25. These results further inform our understanding of the coordination between the ET and JA regulatory systems.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxilipinas , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
New Phytol ; 218(4): 1504-1521, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29498046

RESUMO

N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Ácido Mirístico/metabolismo , Processamento de Proteína Pós-Traducional , Ácido Abscísico/farmacologia , Acilação , Motivos de Aminoácidos , Animais , Ânions , Arabidopsis/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Lipídeos/química , Modelos Biológicos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nicotiana/enzimologia , Xenopus
4.
J Tissue Eng Regen Med ; 11(6): 1888-1896, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28586545

RESUMO

In acute liver failure (ALF), a poorly controlled innate immune response causes massive hepatic destruction, which elicits a systemic inflammatory response, progressive multiple organ failure and ultimate sudden death. Although the liver has inherent tissue-repairing activities, its regeneration during ALF fails, and orthotopic liver transplantation is the only curative approach. Here we show that a single intravenous administration of stem cells derived from human exfoliated deciduous teeth (SHEDs) or of SHED-derived serum-free conditioned medium (SHED-CM) into the d-galactosamine-induced rat model of ALF markedly improved the condition of the injured liver and the animals' survival rate. The engraftment of infused SHEDs was very low, and both SHEDs and SHED-CM exerted similar levels of therapeutic effect, suggesting that the SHEDs reversed ALF by paracrine mechanisms. Importantly, SHED-CM attenuated the ALF-induced pro-inflammatory response and generated an anti-inflammatory/tissue-regenerating environment, which was accompanied by the induction of anti-inflammatory M2-like hepatic macrophages. Secretome analysis by cytokine antibody array revealed that the SHED-CM contained multiple tissue-regenerating factors with known roles in anti-apoptosis/hepatocyte protection, angiogenesis, macrophage differentiation and the proliferation/differentiation of liver progenitor cells. Taken together, our findings suggest that SHEDs produce factors that provide multifaceted therapeutic benefits for AFL. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Falência Hepática Aguda , Regeneração Hepática , Transplante de Células-Tronco , Células-Tronco/metabolismo , Dente Decíduo , Animais , Apoptose , Diferenciação Celular , Feminino , Hepatócitos/metabolismo , Hepatócitos/patologia , Xenoenxertos , Humanos , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Falência Hepática Aguda/terapia , Macrófagos/metabolismo , Macrófagos/patologia , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Células-Tronco/patologia
5.
Sci Rep ; 7: 44043, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272428

RESUMO

Effective treatments for acute liver failure (ALF) are still lacking. We recently reported that a single intravenous administration of serum-free conditioned medium from stem cells derived from human exfoliated deciduous teeth (SHED-CM) into the D-galactosamine (D-Gal)-induced rat ALF model improves the liver injury. However, the specific factors in SHED-CM that are responsible for resolving ALF remain unclear. Here we found that depleting SHED-CM of two anti-inflammatory M2 macrophage inducers-monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (sSiglec-9)-abolished its ability to resolve rat ALF. Furthermore, treatment with MCP-1/sSiglec-9 alone dramatically improved the survival of ALF rats. This treatment induced anti-inflammatory M2, suppressed hepatocyte apoptosis, and promoted hepatocyte proliferation. Treatment with an M2-depletion reagent (mannosylated clodronate liposomes) suppressed the recovery. In addition, MCP-1 and sSiglec-9 synergistically promoted the M2 differentiation of bone marrow-derived macrophages via CCR2, accompanied by the production of multiple liver-regenerating factors. The conditioned medium from MCP-1/sSiglec-9-activated M2 macrophages, but not from interleukin-4-induced ones, suppressed the D-Gal- and LPS-induced apoptosis of primary hepatocytes and promoted their proliferation in vitro. The unique combination of MCP-1/sSiglec-9 ameliorates rat ALF by inhibiting hepatocellular apoptosis and promoting liver regeneration through the induction of anti-inflammatory/tissue-repairing M2 macrophages.


Assuntos
Quimiocina CCL2/metabolismo , Falência Hepática Aguda/metabolismo , Macrófagos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Apoptose , Proliferação de Células , Meios de Cultura Livres de Soro , Feminino , Inflamação/complicações , Inflamação/metabolismo , Falência Hepática Aguda/complicações , Ratos Sprague-Dawley , Células-Tronco/fisiologia , Esfoliação de Dente , Dente Decíduo/citologia
6.
J Tissue Eng Regen Med ; 11(7): 2116-2126, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26612624

RESUMO

Distraction osteogenesis (DO) is a surgical procedure used to correct various skeletal disorders. Improving the technique by reducing the healing time would be of clinical relevance. The aim of this study was to determine the angiogenic and regenerative potential of conditioned media (CMs) collected from human dental pulp cells (hDPCs) grown under different culture conditions. CM collected from cells under hypoxia was used to improve bone healing and the DO procedure in vivo. The angiogenic potentials of CMs collected from hDPCs grown under normoxic (-Nor) and hypoxic (-Hyp) conditions were evaluated by quantitative PCR (VEGF-A, angiopoietin-1, angiopoietin-2, interleukin-6 (IL-6) and CXCL12), ELISA assays (VEGF-A, Ang-2), tube-formation and wound-healing assays, using human umbilical vein endothelial cells. The results demonstrated that hypoxic CM had significantly higher angiogenic potential than normoxic CM. Human fetal osteoblasts (hFOBs) were exposed to CM, followed by alizarin red staining, to assess the osteogenic potential. It was found that CM did not enhance the mineralization capacity of hFOBs. DO was performed in the tibiae of 30 mice, followed by a local injection of 20 µl CM (CM-Nor and CM-Hyp groups) or serum-free DMEM (control group) into the distraction zone every second day. The mice were sacrificed at days 13 and 27. The CM-Hyp treatment revealed a higher X-ray density than the control group (p < 0.05). Our study suggests that the angiogenic effect promoted by hypoxic culture conditions is dependent on VEGF-A and Ang-2 released from hDPCs. Furthermore, CM-Hyp treatment may thus improve the DO procedure, accelerating bone healing. © 2015 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.


Assuntos
Polpa Dentária/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Osteogênese por Distração , Tíbia , Animais , Hipóxia Celular , Meios de Cultivo Condicionados/farmacologia , Polpa Dentária/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Tíbia/lesões , Tíbia/metabolismo , Tíbia/patologia , Cicatrização/efeitos dos fármacos
7.
Dent Traumatol ; 33(1): 19-26, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27145147

RESUMO

AIM: To evaluate the effect of MSC-conditioned medium (CM) on the secretion of pro- and anti-inflammatory cytokines from dental pulp cells (hDPC) in vitro, and on the gene expression in vivo after replantation of rat molars. MATERIALS AND METHODS: hDPC were cultured in CM for 24 h, and the concentration of interleukin IL-10, IL-4, IL-6, and IL-8, regulated on activation, normal T Cell expressed and secreted (RANTES), and prostaglandin E2 (PGE2 ) in the media were measured by multiplex assay and ELISA, respectively. Expression of cyclooxygenase-2 (COX-2) was also examined by Western blot analysis after 24 h. Left and right maxillary first rat molars (n = 20) were elevated for 2 min and then replanted with or without application of CM into the tooth sockets. Levels of IL-1ß, IL-10, IL-4, IL-6, and IL-8, and tumor necrosis factor-alpha (TNF-α) mRNA were evaluated by real-time qRT-PCR 3 and 14 days following tooth replantation. RESULTS: The production of IL-8, IL-10, and IL-6, RANTES and PGE2 by cells cultured in CM was significantly higher than production by cells cultured in standard medium (DMEM). At day 3 following replantation in vivo, the levels of IL-1ß and IL-6, and TNF-α mRNA were significantly lower in the CM-treated replanted teeth compared with control teeth. Further, at day 3, the IL-6/IL-10 ratio was significantly lower in the CM-treated replanted teeth compared with control. At day 14 following replantation, no differences in the mRNA ratios were detected between the pulp tissues of replanted and control teeth. CONCLUSIONS: These findings indicated that CM promotes secretion of pro- and anti-inflammatory cytokines from hDPCin vitro and attenuates the initial inflammatory response in the rat dental pulp in vivo following tooth replantation.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Células-Tronco Mesenquimais/fisiologia , Animais , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Dente Molar/cirurgia , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Extração Dentária , Reimplante Dentário
8.
Stem Cells ; 35(3): 641-653, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862629

RESUMO

Peripheral nerves (PNs) exhibit remarkable self-repairing reparative activity after a simple crush or cut injury. However, the neuronal transection involving a nerve gap overwhelms their repairing activity and causes persistent paralysis. Here, we show that an implantation of the serum-free conditioned medium from stem cells from human exfoliated deciduous teeth (SHED-CM) immersed in a collagen sponge into the nerve gap formed by rat facial nerves transection restored the neurological function. In contrast, SHED-CM specifically depleted of a set of anti-inflammatory M2 macrophage inducers, monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (sSiglec-9) lost the ability to restore neurological function in this model. Notably, the combination of MCP-1 and sSiglec-9 induced the polarization of M2 macrophages in vitro, resulting in the expression of multiple trophic factors that enhanced proliferation, migration, and differentiation of Schwann cells, blood vessel formation, and nerve fiber extension. Furthermore, the implantation of a collagen graft containing MCP-1/sSiglec-9 into the nerve gap induced anti-inflammatory M2 macrophage polarization, generated a Schwann-cell bridge instead of fibrotic scar, induced axonal regrowth, and restored nerve function. The specific elimination of M2 macrophages by Mannosylated-Clodrosome suppressed the MCP-1/sSiglec-9-mediated neurological recovery. Taken together, our data suggest that MCP-1/sSiglec-9 regenerates PNs by inducing tissue-repairing M2 macrophages and may provide therapeutic benefits for severe peripheral nerve injuries. Stem Cells 2017;35:641-653.


Assuntos
Polaridade Celular , Quimiocina CCL2/metabolismo , Macrófagos/patologia , Nervos Periféricos/patologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Criança , Nervo Facial/fisiopatologia , Feminino , Gânglios Espinais/metabolismo , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Regeneração Nervosa , Crescimento Neuronal , Nervos Periféricos/fisiopatologia , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Células de Schwann , Transdução de Sinais , Células-Tronco/metabolismo , Dente Decíduo/citologia
9.
Stem Cells Transl Med ; 5(10): 1416-1424, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27280796

RESUMO

: Chronic liver injury from various causes often results in liver fibrosis (LF). Although the liver possesses endogenous tissue-repairing activities, these can be overcome by sustained inflammation and excessive fibrotic scar formation. Advanced LF leads to irreversible cirrhosis and subsequent liver failure and/or hepatic cancer. Here, using the mouse carbon tetrachloride (CCl4)-induced LF model, we showed that a single intravenous administration of stem cells derived from human exfoliated deciduous teeth (SHEDs) or of SHED-derived serum-free conditioned medium (SHED-CM) resulted in fibrotic scar resolution. SHED-CM suppressed the gene expression of proinflammatory mediators, such as TNF-α, IL-1ß, and iNOS, and eliminated activated hepatic stellate cells by inducing their apoptosis, but protected parenchymal hepatocytes from undergoing apoptosis. In addition, SHED-CM induced tissue-repairing macrophages that expressed high levels of the profibrinolytic factor, matrix metalloproteinase 13. Furthermore, SHED-CM suppressed the CCl4-induced apoptosis of primary cultured hepatocytes. SHED-CM contained a high level of hepatocyte growth factor (HGF). Notably, HGF-depleted SHED-CM (dHGF-CM) did not suppress the proinflammatory response or resolve fibrotic scarring. Furthermore, SHED-CM, but not dHGF-CM, inhibited CCl4-induced hepatocyte apoptosis. These results suggest that HGF plays a central role in the SHED-CM-mediated resolution of LF. Taken together, our findings suggest that SHED-CM provides multifaceted therapeutic benefits for the treatment of LF. SIGNIFICANCE: This study demonstrated that a single intravenous administration of stem cells from human exfoliated deciduous teeth (SHEDs) or of the serum-free conditioned medium (CM) derived from SHEDs markedly improved mouse liver fibrosis (LF). SHED-CM suppressed chronic inflammation, eliminated activated hepatic stellate cells by inducing their apoptosis, protected hepatocytes from undergoing apoptosis, and induced differentiation of tissue-repairing macrophages expressing high levels of the profibrinolytic factor matrix metalloproteinase 13. Furthermore, hepatocyte growth factor played a central role in the SHED-CM-mediated resolution of LF. This is the first report demonstrating the multifaceted therapeutic benefits of secreted factors derived from SHEDs for LF.


Assuntos
Polpa Dentária/citologia , Fator de Crescimento de Hepatócito/metabolismo , Cirrose Hepática , Transplante de Células-Tronco Mesenquimais , Animais , Tetracloreto de Carbono/toxicidade , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
10.
Plant Mol Biol ; 91(4-5): 533-47, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27143046

RESUMO

Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs.


Assuntos
Ciclopentanos/metabolismo , Deficiências de Ferro , Oryza/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Modelos Biológicos , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Transcrição Gênica
11.
J Immunol ; 196(10): 4164-71, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27053763

RESUMO

Multiple sclerosis (MS) is a major neuroinflammatory demyelinating disease of the CNS. Current MS treatments, including immunomodulators and immunosuppressants, do not result in complete remission. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells derived from dental pulp. Both SHED and SHED-conditioned medium (SHED-CM) exhibit immunomodulatory and regenerative activities and have the potential to treat various diseases. In this study, we investigated the efficacy of SHED-CM in treating experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. EAE mice treated with a single injection of SHED-CM exhibited significantly improved disease scores, reduced demyelination and axonal injury, and reduced inflammatory cell infiltration and proinflammatory cytokine expression in the spinal cord, which was associated with a shift in the microglia/macrophage phenotype from M1 to M2. SHED-CM also inhibited the proliferation of myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, as well as their production of proinflammatory cytokines in vitro. Treatment of EAE mice with the secreted ectodomain of sialic acid-binding Ig-like lectin-9, a major component of SHED-CM, recapitulated the effects of SHED-CM treatment. Our data suggest that SHED-CM and secreted ectodomain of sialic acid-binding Ig-like lectin-9 may be novel therapeutic treatments for autoimmune diseases, such as MS.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Meios de Cultivo Condicionados/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/fisiologia , Microglia/imunologia , Esclerose Múltipla/imunologia , Animais , Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Dente Decíduo/fisiologia , Dente Decíduo/cirurgia
12.
Bone ; 83: 210-219, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603475

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and chronic inflammation, which lead to the progressive destruction of cartilage and bone in the joints. Numerous studies have reported that administrations of various types of MSCs improve arthritis symptoms in animal models, by paracrine mechanisms. However, the therapeutic effects of the secreted factors alone, without the cell graft, have been uncertain. Here, we show that a single intravenous administration of serum-free conditioned medium (CM) from human deciduous dental pulp stem cells (SHED-CM) into anti-collagen type II antibody-induced arthritis (CAIA), a mouse model of rheumatoid arthritis (RA), markedly improved the arthritis symptoms and joint destruction. The therapeutic efficacy of SHED-CM was associated with an induction of anti-inflammatory M2 macrophages in the CAIA joints and the abrogation of RANKL expression. SHED-CM specifically depleted of an M2 macrophage inducer, the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9), exhibited a reduced ability to induce M2-related gene expression and attenuate CAIA. SHED-CM also inhibited the RANKL-induced osteoclastogenesis in vitro. Collectively, our findings suggest that SHED-CM provides multifaceted therapeutic effects for treating CAIA, including the ED-Siglec-9-dependent induction of M2 macrophage polarization and inhibition of osteoclastogenesis. Thus, SHED-CM may represent a novel anti-inflammatory and reparative therapy for RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Polpa Dentária/citologia , Células-Tronco/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anticorpos , Antígenos CD/metabolismo , Criança , Colágeno Tipo II/imunologia , Meios de Cultivo Condicionados/química , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Injeções Intravenosas , Articulações/efeitos dos fármacos , Articulações/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
13.
Bioorg Med Chem Lett ; 26(1): 9-14, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26602280

RESUMO

In plant biology, calcium ions are involved in a variety of intriguing biological phenomena as a secondary messenger. However, most conventional calcium indicators are not applicable for plant cells because of the difficulty with their localization control in plant cells. We here introduce a method to monitor spatiotemporal Ca(2+) dynamics in living plant cells based on linking the synthetic calcium indicator Calcium Green-1 to a natural product-based protein ligand. In a proof-of-concept study using cultured BY-2 cells overexpressing the target protein for the ligand, the ligand-tethered probe accumulated in the cytosol and nucleus, and enabled real-time monitoring of the cytosolic and nucleus Ca(2+) dynamics under the physiological condition. The present strategy using ligand-tethered fluorescent sensors may be successfully applied to reveal the spatiotemporal dynamics of calcium ions in living plant cells.


Assuntos
Cálcio/análise , Cálcio/metabolismo , Corantes Fluorescentes/análise , Nicotiana/metabolismo , Análise Espaço-Temporal , Células Cultivadas , Citosol/química , Citosol/metabolismo , Corantes Fluorescentes/química , Ligantes , Microscopia de Fluorescência , Estrutura Molecular , Compostos Orgânicos/análise , Compostos Orgânicos/síntese química , Compostos Orgânicos/química , Nicotiana/citologia
14.
Plant Cell Physiol ; 57(2): 291-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26634291

RESUMO

Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity.


Assuntos
Genoma de Cloroplastos , Proteínas de Fluorescência Verde/metabolismo , Marchantia/genética , Sequência de Aminoácidos , Sequência de Bases , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Transformação Genética
15.
BMJ Open Diabetes Res Care ; 3(1): e000128, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504525

RESUMO

OBJECTIVE: Many studies have reported that stem cell transplantation promotes propagation and protection of pancreatic ß-cells in streptozotocin (STZ)-induced diabetic mice without the differentiation of transplanted cells into pancreatic ß-cells, suggesting that the improvement is due to a paracrine effect of the transplanted cells. We investigated the effects of factors secreted by dental pulp stem cells from human exfoliated deciduous teeth (SHED) on ß-cell function and survival. RESEARCH DESIGN AND METHODS: Conditioned medium from SHED (SHED-CM) was collected 48 h after culturing in serum-free Dulbecco's modified Eagle's medium (DMEM). The insulin levels in SHED-CM and serum-free conditioned media from human bone marrow-derived mesenchymal stem cells (BM-CM) were undetectable. STZ-induced diabetic male C57B/6J mice were injected with DMEM as a control, SHED-CM, exendin-4 (Ex-4), or BM-CM for 14 days. Mouse pancreatic ß-cell line MIN6 cells were incubated with different concentrations of STZ with SHED-CM, DMEM, Ex-4, or BM-CM for 6 h. RESULTS: Administration of 1 mL of SHED-CM twice a day improved glucose intolerance in STZ-induced diabetic mice and the effect continued for 20 days after the end of treatment. SHED-CM treatment increased pancreatic insulin content and ß-cell mass through proliferation and an intraperitoneal glucose tolerance test revealed enhanced insulin secretion. Incubation of MIN6 cells (a mouse pancreatic ß-cell line) with SHED-CM enhanced insulin secretion in a glucose concentration-dependent manner and reduced STZ-induced cell death, indicating that the amelioration of hyperglycemia was caused by the direct effects of SHED-CM on ß-cell function and survival. These effects were more pronounced than with the use of Ex-4, a conventional incretin-based drug, and BM-CM, which is a medium derived from other stem cells. CONCLUSIONS: These findings suggest that SHED-CM provides direct protection and encourages the propagation of ß-cells, and has potential as a novel strategy for treatment of diabetes.

16.
PLoS One ; 10(10): e0140121, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509261

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a critical condition associated with high mortality. However, the available treatments for AKI are limited. Stem cells from human exfoliated deciduous teeth (SHED) have recently gained attention as a novel source of stem cells. The purpose of this study was to clarify whether SHED have a therapeutic effect on AKI induced by ischemia-reperfusion injury. METHODS: The left renal artery and vein of the mice were clamped for 20 min to induce ischemia. SHED, bone marrow derived mesenchymal stem cells (BMMSC) or phosphate-buffered saline (control) were administered into the subrenal capsule. To confirm the potency of SHED in vitro, H2O2 stimulation assays and scratch assays were performed. RESULTS: The serum creatinine and blood urea nitrogen levels of the SHED group were significantly lower than those of the control group, while BMMSC showed no therapeutic effect. Infiltration of macrophages and neutrophils in the kidney was significantly attenuated in mice treated with SHED. Cytokine levels (MIP-2, IL-1ß, and MCP-1) in mice kidneys were significantly reduced in the SHED group. In in vitro experiments, SHED significantly decreased MCP-1 secretion in tubular epithelial cells (TEC) stimulated with H2O2. In addition, SHED promoted wound healing in the scratch assays, which was blunted by anti-HGF antibodies. DISCUSSION: SHED attenuated the levels of inflammatory cytokines and improved kidney function in AKI induced by IRI. SHED secreted factors reduced MCP-1 and increased HGF expression, which promoted wound healing. These results suggest that SHED might provide a novel stem cell resource, which can be applied for the treatment of ischemic kidney injury.


Assuntos
Injúria Renal Aguda/terapia , Células-Tronco/citologia , Dente Decíduo/citologia , Animais , Células Cultivadas , Quimiocina CXCL2/metabolismo , Criança , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Receptores CCR2/metabolismo , Células-Tronco/fisiologia
17.
Int J Oral Maxillofac Implants ; 30(5): 1175-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26394357

RESUMO

PURPOSE: To investigate whether bone regeneration can be accelerated by using a conditioned medium (CM) and guided bone regeneration (GBR) technique. MATERIALS AND METHODS: CM was harvested from rat bone marrow stromal cells (BMSCs). The components of CM were immobilized using a polylactide-co-glycolide (PLGA) membrane treated with and without 0.5 mol/L sodium hydroxide (NaOH) to elevate the hydrophilicity. Four experimental groups were prepared: PLGA membrane treated with (1) phosphate-buffered saline (PBS; PBS-M), (2) PBS and 0.5 mol/L NaOH (hydrophilic treatment; PBS-HM), (3) CM (CM-M), and (4) CM and 0.5 mol/L NaOH (CM-HM). These experimental membranes were observed using scanning electron microscopy. Proteins derived from BMSCs immobilized on the PLGA membrane were detected with liquid chromatography-tandem mass spectrometry (LC/MS/MS). Cell proliferation and alkaline phosphatase (ALP) activity were measured to analyze the effect of CM on the BMSCs. Experimental membranes were transplanted into a rat calvarial bone defect model. Microcomputed tomography and histologic analyses were performed 4 and 8 weeks after transplantation. RESULTS: The CM derived from BMSCs can be immobilized on the PLGA membrane. Hydrophilic treatment of the PLGA membrane enhanced the amount of CM immobilization. LC/MS/MS analysis showed that the immobilized proteins on the surface of PLGA membrane were extracellular matrix, such as collagen, decorin, and fibronectin. The proteins in the CM, which were released from the PLGA membrane, enhanced cell proliferation and ALP activity in rat BMSCs. Newly formed bone area at the bone defects that had been treated with CM-HM was significantly high compared with those at bone defects treated with the other membranes. CONCLUSION: The PLGA membrane treated with 0.5 mol/L NaOH and CM promoted bone regeneration in this rat calvarial defect model.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Meios de Cultivo Condicionados/química , Regeneração Tecidual Guiada/métodos , Proteínas Imobilizadas/farmacologia , Ácido Láctico/química , Membranas Artificiais , Células-Tronco Mesenquimais/fisiologia , Ácido Poliglicólico/química , Fosfatase Alcalina/análise , Animais , Doenças Ósseas/patologia , Doenças Ósseas/cirurgia , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida/métodos , Colágeno/análise , Colágeno/farmacologia , Decorina/análise , Decorina/farmacologia , Fibronectinas/análise , Fibronectinas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Proteínas Imobilizadas/análise , Masculino , Microscopia Eletrônica de Varredura , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Crânio/patologia , Crânio/cirurgia , Hidróxido de Sódio/química , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo , Microtomografia por Raio-X/métodos
18.
Cancer Prev Res (Phila) ; 8(8): 702-11, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063725

RESUMO

Inactivation of methylcytosine dioxygenase, ten-eleven translocation (TET) is known to be associated with aberrant DNA methylation in cancers. Tumors with a CpG island methylator phenotype (CIMP), a distinct subgroup with extensive DNA methylation, show characteristic features in the case of colorectal cancer. The relationship between TET inactivation and CIMP in colorectal cancers is not well understood. The expression level of TET family genes was compared between CIMP-positive (CIMP-P) and CIMP-negative (CIMP-N) colorectal cancers. Furthermore, DNA methylation profiling, including assessment of the TET1 gene, was assessed in colorectal cancers, as well as colon polyps. The TET1 was silenced by DNA methylation in a subset of colorectal cancers as well as cell lines, expression of which was reactivated by demethylating agent. TET1 methylation was more frequent in CIMP-P (23/55, 42%) than CIMP-N (2/113, 2%, P < 0.0001) colorectal cancers. This trend was also observed in colon polyps (CIMP-P, 16/40, 40%; CIMP-N, 2/24, 8%; P = 0.002), suggesting that TET1 methylation is an early event in CIMP tumorigenesis. TET1 methylation was significantly associated with BRAF mutation but not with hMLH1 methylation in the CIMP-P colorectal cancers. Colorectal cancers with TET1 methylation have a significantly greater number of DNA methylated genes and less pathological metastasis compared to those without TET1 methylation (P = 0.007 and 0.045, respectively). Our data suggest that TET1 methylation may contribute to the establishment of a unique pathway in respect to CIMP-mediated tumorigenesis, which may be incidental to hMLH1 methylation. In addition, our findings provide evidence that TET1 methylation may be a good biomarker for the prediction of metastasis in colorectal cancer.


Assuntos
Adenocarcinoma Mucinoso/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , Ilhas de CpG/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas/genética , Adenocarcinoma Mucinoso/patologia , Idoso , Biomarcadores Tumorais/genética , Western Blotting , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Humanos , Masculino , Oxigenases de Função Mista , Mutação , Estadiamento de Neoplasias , Fenótipo , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
19.
Cytotherapy ; 17(8): 1119-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26031744

RESUMO

BACKGROUND AIMS: Acute respiratory distress syndrome (ARDS) is a severe inflammatory disorder characterized by acute respiratory failure, resulting from severe, destructive lung inflammation and irreversible lung fibrosis. We evaluated the use of stem cells derived from human exfoliated deciduous teeth (SHEDs) or SHED-derived serum-free conditioned medium (SHED-CM) as treatments for bleomycin (BLM)-induced mice acute lung injury (ALI), exhibiting several pathogenic features associated with the human disease ARDS. METHODS: Mice with BLM-induced ALI with or without SHED or SHED-CM treatment were examined for weight loss and survival. The lung tissue was characterized by histological and real-time quantitative polymerase chain reaction analysis. The effects of SHED-CM on macrophage differentiation in vitro were also assessed. RESULTS: A single intravenous administration of either SHEDs or SHED-CM attenuated the lung injury and weight loss in BLM-treated mice and improved their survival rate. Similar recovery levels were seen in the SHEDs and SHED-CM treatment groups, suggesting that SHED improves ALI by paracrine mechanisms. SHED-CM contained multiple therapeutic factors involved in lung-regenerative mechanisms. Importantly, SHED-CM attenuated the BLM-induced pro-inflammatory response and generated an anti-inflammatory/tissue-regenerating environment, accompanied by the induction of anti-inflammatory M2-like lung macrophages. Furthermore, SHED-CM promoted the in vitro differentiation of bone marrow-derived macrophages into M2-like cells, which expressed high levels of Arginase1, CD206 and Ym-1. DISCUSSION: Our results suggest that SHED-secreted factors provide multifaceted therapeutic effects, including a strong M2-inducing activity, for treating BLM-induced ALI. This work may open new avenues for research on stem cell-based ARDS therapies.


Assuntos
Lesão Pulmonar Aguda/terapia , Polpa Dentária/citologia , Síndrome do Desconforto Respiratório/terapia , Transplante de Células-Tronco , Dente Decíduo/citologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Arginase/metabolismo , Arginase/farmacologia , Bleomicina/farmacologia , Diferenciação Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Polpa Dentária/metabolismo , Feminino , Humanos , Lectinas Tipo C/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Macrófagos/citologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/metabolismo , Regeneração , Síndrome do Desconforto Respiratório/patologia , Dente Decíduo/metabolismo
20.
Stem Cell Res Ther ; 6: 124, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26088364

RESUMO

INTRODUCTION: Surface modification of titanium (Ti) implants promotes bone formation and shortens the osseointegration period. The aim of this study was to promote bone regeneration and stability around implants using atmospheric pressure plasma (APP) pretreatment. This was followed by immobilization of stem cells from human exfoliated deciduous teeth-conditioned medium (SHED-CM) on the Ti implant surface. METHODS: Ti samples (implants, discs, powder) were treated with APP for 30 seconds. Subsequently, these were immobilized on the treated Ti surface, soaked and agitated in phosphate-buffered saline or SHED-CM for 24 hours at 37 °C. The surface topography of the Ti implants was observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. In vivo experiments using Ti implants placed on canine femur bone were then conducted to permit histological analysis at the bone-implant boundary. For the in vitro experiments, protein assays (SDS-PAGE, Bradford assay, liquid chromatography-ion trap mass spectrometry) and canine bone marrow stromal cell (cBMSC) attachment assays were performed using Ti discs or powder. RESULTS: In the in vitro study, treatment of Ti implant surfaces with SHED-CM led to calcium phosphate and extracellular matrix protein immobilization. APP pretreatment increased the amount of SHED-CM immobilized on Ti powder, and contributed to increased cBMSC attachment on Ti discs. In the in vivo study, histological analysis revealed that the Ti implants treated with APP and SHED-CM stimulated new bone formation around implants. CONCLUSIONS: Implant device APP pretreatment followed by SHED-CM immobilization may be an effective application to facilitate bone regeneration around dental implants.


Assuntos
Regeneração Óssea/fisiologia , Implantes Dentários , Células-Tronco/citologia , Titânio/química , Dente Decíduo/citologia , Animais , Pressão Atmosférica , Células da Medula Óssea/citologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Adesão Celular , Células Cultivadas , Células Imobilizadas/química , Células Imobilizadas/citologia , Criança , Meios de Cultivo Condicionados/farmacologia , Cães , Humanos , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Células-Tronco/química , Células-Tronco/efeitos dos fármacos , Células Estromais/química , Células Estromais/citologia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA