Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 87(6): 584-591, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36881721

RESUMO

Dyslipidemia is a risk factor for the development of atherosclerotic cardiovascular disease. 8-Hydroxyeicosapentaenoic acid (8-HEPE) from North Pacific krill (Euphausia pacifica) is known to reduce plasma low-density lipoprotein (LDL) cholesterol levels and increase plasma high-density lipoprotein cholesterol levels in LDL receptor knock-out mice fed a western diet. Moreover, 8-HEPE also reduces the area of aortic atherosclerosis in apoE knock-out mice fed the same diet. In this study, we examined the stereochemical-specific activity of 8-HEPE for inducing expression of cholesterol efflux receptors (Abca1 and Abcg1) in J774.1 cells. Our findings show 8R-HEPE induces the expression of Abca1 and Abcg1 via activation of liver X receptor, whereas 8S-HEPE elicits no such activity. These results suggest that 8R-HEPE derived from North Pacific krill may have beneficial effects against dyslipidemia.


Assuntos
Colesterol , Macrófagos , Camundongos , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos Knockout , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
2.
J Lipid Res ; 60(9): 1491-1502, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31345992

RESUMO

Fatty acids have various physiological effects on melanoma. For example, palmitic acid (PA) increases melanin levels; linoleic acid and DHA decrease melanin levels; and DHA suppresses tumor growth. In this study, we focused on the relationship between the structure of fatty acids and their physiological effects in melanoma to examine the likely mechanisms of action. We showed that saturated fatty acids and PUFAs display opposing effects on melanin content in melanoma cells. Likewise, PA and EPA have opposing effects in terms of actin polymerization. Our findings suggest that PA and EPA change melanin content in melanoma to alter melanosome trafficking by modulating actin polymerization. Here, we also examined the mechanism of the anti-tumor effect of DHA. We found that DHA interacts with receptor for activated C kinase 1 and represses melanoma cell proliferation by suppressing protein kinase C signaling. Our results suggest a new mechanism to explain the physiological effects of fatty acids.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos/farmacologia , Melanoma/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidroxifenilalanina/metabolismo , Humanos , Melaninas/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 116(2): 496-505, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584105

RESUMO

Plant pathogens have optimized their own effector sets to adapt to their hosts. However, certain effectors, regarded as core effectors, are conserved among various pathogens, and may therefore play an important and common role in pathogen virulence. We report here that the widely distributed fungal effector NIS1 targets host immune components that transmit signaling from pattern recognition receptors (PRRs) in plants. NIS1 from two Colletotrichum spp. suppressed the hypersensitive response and oxidative burst, both of which are induced by pathogen-derived molecules, in Nicotiana benthamianaMagnaporthe oryzae NIS1 also suppressed the two defense responses, although this pathogen likely acquired the NIS1 gene via horizontal transfer from Basidiomycota. Interestingly, the root endophyte Colletotrichum tofieldiae also possesses a NIS1 homolog that can suppress the oxidative burst in N. benthamiana We show that NIS1 of multiple pathogens commonly interacts with the PRR-associated kinases BAK1 and BIK1, thereby inhibiting their kinase activities and the BIK1-NADPH oxidase interaction. Furthermore, mutations in the NIS1-targeting proteins, i.e., BAK1 and BIK1, in Arabidopsis thaliana also resulted in reduced immunity to Colletotrichum fungi. Finally, M. oryzae lacking NIS1 displayed significantly reduced virulence on rice and barley, its hosts. Our study therefore reveals that a broad range of filamentous fungi maintain and utilize the core effector NIS1 to establish infection in their host plants and perhaps also beneficial interactions, by targeting conserved and central PRR-associated kinases that are also known to be targeted by bacterial effectors.


Assuntos
Proteínas de Transporte/imunologia , Proteínas Fúngicas/imunologia , Magnaporthe/imunologia , Nicotiana , Doenças das Plantas , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/imunologia , Nicotiana/microbiologia
4.
DNA Res ; 24(1): 51-58, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28028039

RESUMO

Bitter gourd (Momordica charantia) is an important vegetable and medicinal plant in tropical and subtropical regions globally. In this study, the draft genome sequence of a monoecious bitter gourd inbred line, OHB3-1, was analyzed. Through Illumina sequencing and de novo assembly, scaffolds of 285.5 Mb in length were generated, corresponding to ∼84% of the estimated genome size of bitter gourd (339 Mb). In this draft genome sequence, 45,859 protein-coding gene loci were identified, and transposable elements accounted for 15.3% of the whole genome. According to synteny mapping and phylogenetic analysis of conserved genes, bitter gourd was more related to watermelon (Citrullus lanatus) than to cucumber (Cucumis sativus) or melon (C. melo). Using RAD-seq analysis, 1507 marker loci were genotyped in an F2 progeny of two bitter gourd lines, resulting in an improved linkage map, comprising 11 linkage groups. By anchoring RAD tag markers, 255 scaffolds were assigned to the linkage map. Comparative analysis of genome sequences and predicted genes determined that putative trypsin-inhibitor and ribosome-inactivating genes were distinctive in the bitter gourd genome. These genes could characterize the bitter gourd as a medicinal plant.


Assuntos
Genoma de Planta , Momordica charantia/genética , Plantas Medicinais/genética , Clima Tropical , Elementos de DNA Transponíveis , Filogenia , Proteínas Inativadoras de Ribossomos/genética , Inibidores da Tripsina/metabolismo
5.
Plant J ; 74(4): 701-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23451734

RESUMO

Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/metabolismo , Magnaporthe/patogenicidade , Oryza/metabolismo , Doenças das Plantas/imunologia , Proteínas de Bactérias/genética , Burkholderia/genética , Burkholderia/patogenicidade , Citoplasma/metabolismo , Vetores Genéticos , Hordeum/citologia , Hordeum/genética , Hordeum/metabolismo , Interações Hospedeiro-Patógeno , Hifas , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/citologia , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Transporte Proteico , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Triticum/citologia , Triticum/genética , Triticum/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA