Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Leukemia ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914715

RESUMO

Aggressive natural killer cell leukemia (ANKL) is a rare hematological malignancy with a fulminant clinical course. Our previous study revealed that ANKL cells proliferate predominantly in the liver sinusoids and strongly depend on transferrin supplementation. In addition, we demonstrated that liver-resident ANKL cells are sensitive to PPMX-T003, an anti-human transferrin receptor 1 inhibitory antibody, whereas spleen-resident ANKL cells are resistant to transferrin receptor 1 inhibition. However, the microenvironmental factors that regulate the iron dependency of ANKL cells remain unclear. In this study, we first revealed that the anti-neoplastic effect of PPMX-T003 was characterized by DNA double-strand breaks in a DNA replication-dependent manner, similar to conventional cytotoxic agents. We also found that the influx of extracellular amino acids via LAT1 stimulated sensitivity to PPMX-T003. Taken together, we discovered that the amount of extracellular amino acid influx through LAT1 was the key environmental factor determining the iron dependency of ANKL cells via adjustment of their mTOR/Myc activity, which provides a good explanation for the different sensitivity to PPMX-T003 between liver- and spleen-resident ANKL cells, as the liver sinusoid contains abundant amino acids absorbed from the gut.

2.
Cell Death Dis ; 14(9): 642, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773170

RESUMO

Differentiation therapy has been proposed as a promising therapeutic strategy for acute myeloid leukemia (AML); thus, the development of more versatile methodologies that are applicable to a wide range of AML subtypes is desired. Although the FOXOs transcription factor represents a promising drug target for differentiation therapy, the efficacy of FOXO inhibitors is limited in vivo. Here, we show that pharmacological inhibition of a common cis-regulatory element of forkhead box O (FOXO) family members successfully induced cell differentiation in various AML cell lines. Through gene expression profiling and differentiation marker-based CRISPR/Cas9 screening, we identified TRIB1, a complement of the COP1 ubiquitin ligase complex, as a functional FOXO downstream gene maintaining an undifferentiated status. TRIB1 is direct target of FOXO3 and the FOXO-binding cis-regulatory element in the TRIB1 promoter, referred to as the FOXO-responsive element in the TRIB1 promoter (FRE-T), played a critical role in differentiation blockade. Thus, we designed a DNA-binding pharmacological inhibitor of the FOXO-FRE-T interface using pyrrole-imidazole polyamides (PIPs) that specifically bind to FRE-T (FRE-PIPs). The FRE-PIPs conjugated to chlorambucil (FRE-chb) inhibited transcription of TRIB1, causing differentiation in various AML cell lines. FRE-chb suppressed the formation of colonies derived from AML cell lines but not from normal counterparts. Administration of FRE-chb inhibited tumor progression in vivo without remarkable adverse effects. In conclusion, targeting cis-regulatory elements of the FOXO family is a promising therapeutic strategy that induces AML cell differentiation.

3.
Bone Joint J ; 105-B(7): 743-750, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399069

RESUMO

Aims: To clarify the mid-term results of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, combined with structural allograft bone grafting for severe hip dysplasia. Methods: We reviewed patients with severe hip dysplasia, defined as Severin IVb or V (lateral centre-edge angle (LCEA) < 0°), who underwent TOA with a structural bone allograft between 1998 and 2019. A medical chart review was conducted to extract demographic data, complications related to the osteotomy, and modified Harris Hip Score (mHHS). Radiological parameters of hip dysplasia were measured on pre- and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan-Meier product-limited method, and a multivariate Cox proportional hazard model was used to identify predictors for failure. Results: A total of 64 patients (76 hips) were included in this study. The median follow-up period was ten years (interquartile range (IQR) five to 14). The median mHHS improved from 67 (IQR 56 to 80) preoperatively to 96 (IQR 85 to 97) at the latest follow-up (p < 0.001). The radiological parameters improved postoperatively (p < 0.001), with the resulting parameters falling within the normal range in 42% to 95% of hips. The survival rate was 95% at ten years and 80% at 15 years. Preoperative Tönnis grade 2 was an independent risk factor for TOA failure. Conclusion: Our findings suggest that TOA with structural bone allografting is a viable surgical option for correcting severely dysplastic acetabulum in adolescents and young adults without advanced osteoarthritis, with favourable mid-term outcomes.


Assuntos
Luxação Congênita de Quadril , Luxação do Quadril , Adulto Jovem , Adolescente , Humanos , Luxação do Quadril/cirurgia , Resultado do Tratamento , Transplante Ósseo , Estudos Retrospectivos , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Luxação Congênita de Quadril/diagnóstico por imagem , Luxação Congênita de Quadril/cirurgia , Luxação Congênita de Quadril/complicações , Osteotomia/métodos , Aloenxertos
4.
Bone Joint J ; 105-B(7): 760-767, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399111

RESUMO

Aims: The aims of this study were to validate the Forgotten Joint Score-12 (FJS-12) in the postoperative evaluation of periacetabular osteotomy (PAO), identify factors associated with joint awareness after PAO, and determine the FJS-12 threshold for patient-acceptable symptom state (PASS). Methods: Data from 686 patients (882 hips) with hip dysplasia who underwent transposition osteotomy of the acetabulum, a type of PAO, between 1998 and 2019 were reviewed. After screening the study included 442 patients (582 hips; response rate, 78%). Patients who completed a study questionnaire consisting of the visual analogue scale (VAS) for pain and satisfaction, FJS-12, and Hip disability and Osteoarthritis Outcome Score (HOOS) were included. The ceiling effects, internal consistency, convergent validity, and PASS thresholds of FJS-12 were investigated. Results: The median follow-up was 12 years (interquartile range 7 to 16). The ceiling effect of FJS-12 was 7.2%, the lowest of all the measures examined. FJS-12 correlated with all HOOS subscales (ρ = 0.72 to 0.77, p < 0.001) and pain and satisfaction-VAS (ρ = -0.63 and 0.56, p < 0.001), suggesting good convergent validity. Cronbach's α was 0.95 for the FJS-12, which indicated excellent internal consistency. The median FJS-12 score for preoperative Tönnis grade 0 hips (60 points) was higher than that for grade 1 (51 points) or 2 (46 points). When PASS was defined as pain-VAS < 21 and satisfaction-VAS ≥ 77, the FJS-12 threshold that maximized the sensitivity and specificity for detecting PASS was 50 points (area under the curve (AUC) = 0.85). Conclusion: Our results suggest that FJS-12 is a valid and reliable assessment tool for patients undergoing PAO, and the threshold of 50 points may be useful to determine patient satisfaction following PAO in clinical settings. Further investigation of the factors influencing postoperative joint awareness may enable improved prediction of treatment efficacy and informed decision-making regarding the indication of PAO.


Assuntos
Luxação Congênita de Quadril , Luxação do Quadril , Humanos , Luxação do Quadril/cirurgia , Luxação Congênita de Quadril/cirurgia , Luxação Congênita de Quadril/complicações , Acetábulo/cirurgia , Resultado do Tratamento , Osteotomia/métodos , Dor , Articulação do Quadril/cirurgia , Estudos Retrospectivos
5.
Pain Res Manag ; 2023: 1613116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351537

RESUMO

Background: Exercise can reduce the pain threshold momentarily and induce analgesia, which is called exercise-induced hypoalgesia (EIH). Exercise therapy for inducing EIH may be an effective treatment option for pain. We aimed at investigating whether continuous passive motion (CPM) on both healthy and affected sides could induce EIH and reduce pain in the operated knee in patients after unilateral total knee arthroplasty (TKA). Patients and Methods. In this prospective randomized controlled trial, participants were randomly assigned to two groups: a bilateral group that received bilateral exercise on the operated and healthy sides and a unilateral group that received exercise therapy only on the affected side. We enrolled 40 patients aged ≥60 years who were scheduled to undergo unilateral TKA. Visual analogue scale (VAS) scores and range of motion (ROM) on the operated side were measured immediately before and after CPM on postoperative days 2, 4, 7, and 14. The primary outcome was the difference in the VAS scores before and after CPM on postoperative day 14. The secondary outcome was the difference in the ROM before and after CPM on postoperative day 14. Results: Comparison of VAS scores before and after CPM showed no significant intergroup differences on all measurement dates. However, there was a significant difference in values on day 14 (P < 0.05). Both groups showed an increase in ROM after CPM, with significant increments observed on days 2 and 4 in the bilateral group and on day 14 in the unilateral group. There was no significant difference in values on postoperative day 14. Conclusion: Post-TKA pain was reduced by performing the same exercise on the healthy knee during CPM therapy. This could be due to EIH, and the results indicated that EIH can also influence postoperative pain immediately after surgery.


Assuntos
Artroplastia do Joelho , Humanos , Artroplastia do Joelho/efeitos adversos , Estudos Prospectivos , Terapia por Exercício/métodos , Resultado do Tratamento , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/terapia , Analgésicos , Amplitude de Movimento Articular
6.
Arthroplast Today ; 19: 101067, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36471771

RESUMO

Background: Prosthetic joint infection, which is caused by implant treatment, is a severe complication. Consequently, silver-containing hydroxyapatite (Ag-HA)-coated implants have been developed to prevent prosthetic joint infection by combining Ag with HA. The Ag-HA-coated total hip prosthesis, which combines the antibacterial activity of Ag and the osteoconductivity of HA, is the first antibacterial cementless total hip prosthesis worldwide. This study aimed to evaluate the short-term outcomes of total hip arthroplasty (THA) with Ag-HA-coated implants. Methods: Overall, 50 hips with various disabling hip diseases and postoperative infection risks that underwent a primary THA using an Ag-HA total hip prosthesis were enrolled. The patients included 37 women (41 hips) and 8 men (9 hips), and the mean age at the time of surgery was 77 years. The clinical outcomes and hip function before and at 5 years postoperatively were measured using the Japanese Orthopaedic Association hip score. Implant stability was assessed, and postoperative complications were also examined. Results: The Japanese Orthopaedic Association score increased in all cases and improved from 41 to 86 points after the THA (P < .001). Radiography revealed no implant failure. Dislocation and deep vein thrombosis also occurred in 1 case each. However, there were no adverse reactions associated with Ag, and argyria was not observed in any case. Additionally, none of the patients experienced infection following the surgery. Conclusions: Silver-containing hydroxyapatite-coated implants significantly enhanced patients' daily activities without any adverse effects on the human body attributed to Ag, and they are expected to reduce postoperative infections.

7.
J Orthop Translat ; 36: 64-74, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35979174

RESUMO

Background: A critical size bone defect is a clinical scenario in which bone is lost or excised due to trauma, infection, tumor, or other causes, and cannot completely heal spontaneously. The most common treatment for this condition is autologous bone grafting to the defect site. However, autologous bone graft is often insufficient in quantity or quality for transplantation to these large defects. Recently, tissue engineering methods using mesenchymal stem cells (MSCs) have been proposed as an alternative treatment. However, the underlying biological principles and optimal techniques for tissue regeneration of bone using stem cell therapy have not been completely elucidated. Methods: In this study, we compare the early cellular dynamics of healing between bone graft transplantation and MSC therapy in a murine chronic femoral critical-size bone defect. We employ high-dimensional mass cytometry to provide a comprehensive view of the differences in cell composition, stem cell functionality, and immunomodulatory activity between these two treatment methods one week after transplantation. Results: We reveal distinct cell compositions among tissues from bone defect sites compared with original bone graft, show active recruitment of MSCs to the bone defect sites, and demonstrate the phenotypic diversity of macrophages and T cells in each group that may affect the clinical outcome. Conclusion: Our results provide critical data and future directions on the use of MSCs for treating critical size defects to regenerate bone.Translational Potential of this article: This study showed systematic comparisons of the cellular and immunomodulatory profiles among different interventions to improve the healing of the critical-size bone defect. The results provided potential strategies for designing robust therapeutic interventions for the unmet clinical need of treating critical-size bone defects.

8.
Biochem Biophys Res Commun ; 621: 74-79, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35810594

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T lymphocytes. Although various therapeutic approaches have been developed, refractoriness of chemotherapy and relapse cause a poor prognosis of the disease and further therapeutic strategies are required. Here, we report that Ras homolog enriched in brain (RHEB), a critical regulator of mTOR complex 1 activity, is a potential target for T-ALL therapy. In this study, we established an sgRNA library that comprehensively targeted mTOR upstream and downstream pathways, including autophagy. CRISPR/Cas9 dropout screening revealed critical roles of mTOR-related molecules in T-ALL cell survival. Among the regulators, we focused on RHEB because we previously found that it is dispensable for normal hematopoiesis in mice. Transcriptome and metabolic analyses revealed that RHEB deficiency suppressed de novo nucleotide biosynthesis, leading to human T-ALL cell death. Importantly, RHEB deficiency suppressed tumor growth in both mouse and xenograft models. Our data provide a potential strategy for efficient therapy of T-ALL by RHEB-specific inhibition.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
Cancer Sci ; 113(8): 2716-2726, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35657693

RESUMO

Lysosomes function as the digestive system of a cell and are involved in macromolecular recycling, vesicle trafficking, metabolic reprogramming, and progrowth signaling. Although quality control of lysosome biogenesis is thought to be a potential target for cancer therapy, practical strategies have not been established. Here, we show that lysosomal membrane integrity supported by lysophagy, a selective autophagy for damaged lysosomes, is a promising therapeutic target for glioblastoma (GBM). In this study, we found that ifenprodil, an FDA-approved drug with neuromodulatory activities, efficiently inhibited spheroid formation of patient-derived GBM cells in a combination with autophagy inhibition. Ifenprodil increased intracellular Ca2+ level, resulting in mitochondrial reactive oxygen species-mediated cytotoxicity. The ifenprodil-induced Ca2+ elevation was due to Ca2+ release from lysosomes, but not endoplasmic reticulum, associated with galectin-3 punctation as an indicator of lysosomal membrane damage. As the Ca2+ release was enhanced by ATG5 deficiency, autophagy protected against lysosomal membrane damage. By comparative analysis of 765 FDA-approved compounds, we identified another clinically available drug for central nervous system (CNS) diseases, amoxapine, in addition to ifenprodil. Both compounds promoted degradation of lysosomal membrane proteins, indicating a critical role of lysophagy in quality control of lysosomal membrane integrity. Importantly, a synergistic inhibitory effect of ifenprodil and chloroquine, a clinically available autophagy inhibitor, on spheroid formation was remarkable in GBM cells, but not in nontransformed neural progenitor cells. Finally, chloroquine dramatically enhanced effects of the compounds inducing lysosomal membrane damage in a patient-derived xenograft model. These data demonstrate a therapeutic advantage of targeting lysosomal membrane integrity in GBM.


Assuntos
Glioblastoma , Glioma , Autofagia , Cloroquina/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Lisossomos/metabolismo , Macroautofagia
10.
Lab Invest ; 102(9): 1000-1010, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35474350

RESUMO

RANKL induces NFATc1, a key transcriptional factor to induce osteoclast-specific genes such as cathepsin K, whereas transcriptional control of osteoclast survival is not fully understood. Leukemia/lymphoma-related factor (LRF) in mouse and osteoclast zinc finger protein (OCZF) in rat are zinc finger and BTB domain-containing protein (zBTB) family of transcriptional regulators, and are critical regulators of hematopoiesis. We have previously shown that differentiation and survival were enhanced in osteoclasts from OCZF-Transgenic (Tg) mice. In the present study, we show a possible mechanism of osteoclast survival regulated by LRF/OCZF and the role of OCZF overexpression in pathological bone loss. In the in vitro cultures, LRF was highly colocalized with NFATc1 in cells of early stage in osteoclastogenesis, but only LRF expression persisted after differentiation into mature osteoclasts. LRF expression was further enhanced in resorbing osteoclasts formed on dentin slices. Osteoclast survival inhibitor such as alendronate, a bisphosphonate reduced LRF expression. Micro CT evaluation revealed that femurs of OCZF-Tg mice showed significantly lower bone volume compared to that of WT mice. Furthermore, OCZF overexpression markedly promoted bone loss in ovariectomy-induced osteolytic mouse model. The expression of anti-apoptotic Bcl-xl mRNA, which is formed by alternative splicing, was enhanced in the cultures in which osteoclasts are formed from OCZF-Tg mice. In contrast, the expression of pro-apoptotic Bcl-xs mRNA was lost in the culture derived from OCZF-Tg mice. We found that the expression levels of RNA binding splicing regulator, Src substrate associated in mitosis of 68 kDa (Sam68) protein were markedly decreased in OCZF-Tg mice-derived osteoclasts. In addition, shRNA-mediated knockdown of Sam68 expression increased the expression of Bcl-xl mRNA, suggesting that SAM68 regulates the expression of Bcl-xl. These results indicate that OCZF overexpression reduces protein levels of Sam68, thereby promotes osteoclast survival, and suggest that LRF/OCZF is a promising target for regulating pathological bone loss.


Assuntos
Reabsorção Óssea , Leucemia , Linfoma , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Proteínas de Ligação a DNA , Feminino , Camundongos , Camundongos Transgênicos , Fatores de Transcrição NFATC , Osteoclastos , Ligante RANK , RNA Mensageiro , Proteínas de Ligação a RNA , Ratos , Proteínas Repressoras , Fatores de Transcrição , Dedos de Zinco
11.
Medicina (Kaunas) ; 58(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35454347

RESUMO

The concept of minimally invasive spine therapy (MIST) has been proposed as a treatment strategy to reduce the need for overall patient care, including not only minimally invasive spine surgery (MISS) but also conservative treatment and rehabilitation. To maximize the effectiveness of patient care in spine surgery, the educational needs of medical students, residents, and patient rehabilitation can be enhanced by digital transformation (DX), including virtual reality (VR), augmented reality (AR), mixed reality (MR), and extended reality (XR), three-dimensional (3D) medical images and holograms; wearable sensors, high-performance video cameras, fifth-generation wireless system (5G) and wireless fidelity (Wi-Fi), artificial intelligence, and head-mounted displays (HMDs). Furthermore, to comply with the guidelines for social distancing due to the unexpected COVID-19 pandemic, the use of DX to maintain healthcare and education is becoming more innovative than ever before. In medical education, with the evolution of science and technology, it has become mandatory to provide a highly interactive educational environment and experience using DX technology for residents and medical students, known as digital natives. This study describes an approach to pre- and intraoperative medical education and postoperative rehabilitation using DX in the field of spine surgery that was implemented during the COVID-19 pandemic and will be utilized thereafter.


Assuntos
Realidade Aumentada , COVID-19 , Educação Médica , Inteligência Artificial , Educação Médica/métodos , Humanos , Pandemias
12.
Immun Ageing ; 19(1): 14, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279175

RESUMO

BACKGROUND: Despite the high incidence of fractures and pseudoarthrosis in the aged population, a potential role for the use of mesenchymal stem cells (MSCs) in the treatment of bone defects in elderly patients has not been elucidated. Inflammation and the innate immune system, including macrophages, play crucial roles in the differentiation and activation of MSCs. We have developed lentivirus-transduced interleukin 4 (IL4) over-expressing MSCs (IL4-MSCs) to polarize macrophages to an M2 phenotype to promote bone healing in an established young murine critical size bone defect model. In the current study, we explore the potential of IL4-MSCs in aged mice. METHODS: A 2 mm femoral diaphyseal bone defect was created and fixed with an external fixation device in 15- to 17-month-old male and female BALB/c mice. Microribbon (µRB) scaffolds (Sc) with or without encapsulation of MSCs were implanted in the defect sites. Accordingly, the mice were divided into three treatment groups: Sc-only, Sc + MSCs, and Sc + IL4-MSCs. Mice were euthanized six weeks after the surgery; subsequently, MicroCT (µCT), histochemical and immunohistochemical analyses were performed. RESULTS: µCT analysis revealed that bone formation was markedly enhanced in the IL4-MSC group. Compared with the Sc-only, the amount of new bone increased in the Sc + MSCs and Sc + IL4-MSC groups. However, no bridging of bone was observed in all groups. H&E staining showed fibrous tissue within the defect in all groups. Alkaline phosphatase (ALP) staining was increased in the Sc + IL4-MSC group. The Sc + IL4-MSCs group showed a decrease in the number of M1 macrophages and an increase in the number of M2 macrophages, with a significant increase in the M2/M1 ratio. DISCUSSION: IL4 promotes macrophage polarization to an M2 phenotype, facilitating osteogenesis and vasculogenesis. The addition of IL4-MSCs in the µRB scaffold polarized macrophages to an M2 phenotype and increased bone formation; however, complete bone bridging was not observed in any specimens. These results suggest that IL4-MSCs are insufficient to heal a critical size bone defect in aged mice, as opposed to younger animals. Additional therapeutic strategies are needed in this challenging clinical scenario.

13.
J Clin Med ; 11(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35054164

RESUMO

In recent years, with the rapid advancement and consumerization of virtual reality, augmented reality, mixed reality, and extended reality (XR) technology, the use of XR technology in spine medicine has also become increasingly popular. The rising use of XR technology in spine medicine has also been accelerated by the recent wave of digital transformation (i.e., case-specific three-dimensional medical images and holograms, wearable sensors, video cameras, fifth generation, artificial intelligence, and head-mounted displays), and further accelerated by the COVID-19 pandemic and the increase in minimally invasive spine surgery. The COVID-19 pandemic has a negative impact on society, but positive impacts can also be expected, including the continued spread and adoption of telemedicine services (i.e., tele-education, tele-surgery, tele-rehabilitation) that promote digital transformation. The purpose of this narrative review is to describe the accelerators of XR (VR, AR, MR) technology in spine medicine and then to provide a comprehensive review of the use of XR technology in spine medicine, including surgery, consultation, education, and rehabilitation, as well as to identify its limitations and future perspectives (status quo and quo vadis).

14.
J Orthop Sci ; 27(2): 402-407, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33536142

RESUMO

BACKGROUND: While periprosthetic fractures following total hip arthroplasty (THA) are a well-known phenomenon for orthopedic surgeons, fragility fractures following THA are also a significant, though less studied, concern. Furthermore, patients who have undergone THA have several additional risk factors for fragility fractures, including motor weakness, bone atrophy, and limping. The aims of this study were to evaluate the incidence of fragility fractures following THA and to clarify the characteristics of these fractures. METHODS: This study included 5678 primary THA procedures in 4589 female patients. This study evaluated body morphology data, disease type leading to THA, Japanese Orthopaedic Association hip score, range of motion of the hip joint, and medical history. Distal radius and patella fractures were defined as fragility fractures. Risk factors for fragility fractures after THA were calculated by comparing the fragility fracture group with the non-fracture group. RESULTS: Fifty-three fragility fractures were confirmed in 53 patients (distal radius fracture: 32 fractures in 32 patients, patella fracture: 21 fractures in 21 patients). In the univariate analysis, the following eight risk factors for fragility fractures were significantly different between the groups: height, weight, follow-up period, developmental dysplasia of the hip, primary osteoarthritis, abduction before THA, internal rotation before THA, and external rotation before THA. Medical histories were not significantly different between the groups. There was no difference in any study factor and in the time of occurrence between the radius fractures and patella fractures analyzed as fragility fractures. CONCLUSIONS: This study revealed that there are significant preoperative factors of fragility fractures following THA. These factors will serve as useful data for THA treatment strategies, preoperative explanations, and future studies.


Assuntos
Artroplastia de Quadril , Fraturas Periprotéticas , Artroplastia de Quadril/efeitos adversos , Feminino , Articulação do Quadril/cirurgia , Humanos , Fraturas Periprotéticas/epidemiologia , Fraturas Periprotéticas/etiologia , Fraturas Periprotéticas/cirurgia , Amplitude de Movimento Articular , Reoperação , Estudos Retrospectivos , Resultado do Tratamento
15.
Front Bioeng Biotechnol ; 9: 755964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34738008

RESUMO

Mesenchymal stem cell (MSC)-based therapy and novel biomaterials are promising strategies for healing of long bone critical size defects. Interleukin-4 (IL-4) over-expressing MSCs within a gelatin microribbon (µRB) scaffold was previously shown to enhance the bridging of bone within a critical size femoral bone defect in male Balb/c mice. Whether sex differences affect the healing of this bone defect in conjunction with different treatments is unknown. In this study, we generated 2-mm critical-sized femoral diaphyseal bone defects in 10-12-week-old female and male Balb/c mice. Scaffolds without cells and with unmodified MSCs were implanted immediately after the primary surgery that created the bone defect; scaffolds with IL-4 over-expressing MSCs were implanted 3 days after the primary surgery, to avoid the adverse effects of IL-4 on the initial inflammatory phase of fracture healing. Mice were euthanized 6 weeks after the primary surgery and femurs were collected. MicroCT (µCT), histochemical and immunohistochemical analyses were subsequently performed of the defect site. µRB scaffolds with IL-4 over-expressing MSCs enhanced bone healing in both female and male mice. Male mice showed higher measures of bone bridging and increased alkaline phosphatase (ALP) positive areas, total macrophages and M2 macrophages compared with female mice after receiving scaffolds with IL-4 over-expressing MSCs. Female mice showed higher Tartrate-Resistant Acid Phosphatase (TRAP) positive osteoclast numbers compared with male mice. These results demonstrated that sex differences should be considered during the application of MSC-based studies of bone healing.

16.
Front Cell Dev Biol ; 9: 757830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722543

RESUMO

Wear particles from total joint arthroplasties (TJAs) induce chronic inflammation, macrophage infiltration and lead to bone loss by promoting bone destruction and inhibiting bone formation. Inhibition of particle-associated chronic inflammation and the associated bone loss is critical to the success and survivorship of TJAs. The purpose of this study is to test the hypothesis that polyethylene particle induced chronic inflammatory bone loss could be suppressed by local injection of NF-κB sensing Interleukin-4 (IL-4) over-expressing MSCs using the murine continuous polyethylene particle infusion model. The animal model was generated with continuous infusion of polyethylene particles into the intramedullary space of the femur for 6 weeks. Cells were locally injected into the intramedullary space 3 weeks after the primary surgery. Femurs were collected 6 weeks after the primary surgery. Micro-computational tomography (µCT), histochemical and immunohistochemical analyses were performed. Particle-infusion resulted in a prolonged pro-inflammatory M1 macrophage dominated phenotype and a decrease of the anti-inflammatory M2 macrophage phenotype, an increase in TRAP positive osteoclasts, and lower alkaline phosphatase staining area and bone mineral density, indicating chronic particle-associated inflammatory bone loss. Local injection of MSCs or NF-κB sensing IL-4 over-expressing MSCs reversed the particle-associated chronic inflammatory bone loss and facilitated bone healing. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments, which could be an efficacious therapeutic strategy for periprosthetic osteolysis.

17.
Front Cell Dev Biol ; 9: 631063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816480

RESUMO

Chronic inflammation is a common feature in many diseases of different organ systems, including bone. However, there are few interventions to mitigate chronic inflammation and preserve host tissue. Previous in vitro studies demonstrated that preconditioning of mesenchymal stem cells (pMSCs) using lipopolysaccharide and tumor necrosis factor-α polarized macrophages from a pro-inflammatory to an anti-inflammatory phenotype and increased osteogenesis compared to unaltered MSCs. In the current study, we investigated the local injection of MSCs or pMSCs during the acute versus chronic inflammatory phase in a murine model of inflammation of bone: the continuous femoral intramedullary polyethylene particle infusion model. Chronic inflammation due to contaminated polyethylene particles decreased bone mineral density and increased osteoclast-like cells positively stained with leukocyte tartrate resistant acid phosphatase (TRAP) staining, and resulted in a sustained M1 pro-inflammatory macrophage phenotype and a decreased M2 anti-inflammatory phenotype. Local injection of MSCs or pMSCs during the chronic inflammatory phase reversed these findings. Conversely, immediate local injection of pMSCs during the acute inflammatory phase impaired bone healing, probably by mitigating the mandatory acute inflammatory reaction. These results suggest that the timing of interventions to facilitate bone healing by modulating inflammation is critical to the outcome. Interventions to facilitate bone healing by modulating acute inflammation should be prudently applied, as this phase of bone healing is temporally sensitive. Alternatively, local injection of MSCs or pMSCs during the chronic inflammatory phase may be a potential intervention to mitigate the adverse effects of contaminated particles on bone.

18.
J Biomed Mater Res A ; 109(10): 1828-1839, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33779115

RESUMO

Wear particle-associated bone loss (periprosthetic osteolysis) constrains the longevity of total joint arthroplasty (TJA). Wear particles induce a prolonged upregulation of nuclear factor kappa B (NF-κB) signaling in macrophages and osteoclasts. Synthetic double-stranded oligodeoxynucleotides (ODNs) can prevent the binding of NF-κB to the promoter regions of targeted genes and inhibit genetic activation. We tested the hypothesis that polyethylene-particle induced chronic inflammatory bone loss could be suppressed by local delivery of NF-κB decoy ODNs in murine in vivo model. Polyethylene particles were continuously infused into the medullary cavity of the distal femur for 6 weeks to induce chronic inflammation, and micro-computational tomography and immunohistochemical analysis were performed. Particle-induced chronic inflammation resulted in lower BMD values, an increase in osteoclastogenesis and nuclear translocation of p65, a prolonged M1 pro-inflammatory macrophage phenotype, and a decrease of M2 anti-inflammatory macrophage phenotype. Delayed timing of local infusion of NF-κB decoy ODN for the last 3 weeks reversed polyethylene-particle associated chronic inflammatory bone loss and facilitated bone healing. This study demonstrated that polyethylene-particle associated chronic inflammatory osteolysis can be effectively modulated via interference with the NF-κB pathway; this minimally invasive intervention could potentially be an efficacious therapeutic strategy for periprosthetic osteolysis after TJA.


Assuntos
Inflamação/patologia , NF-kappa B/metabolismo , Osteólise/patologia , Polietileno/toxicidade , Fosfatase Alcalina/metabolismo , Animais , Núcleo Celular/metabolismo , Doença Crônica , Modelos Animais de Doenças , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/farmacologia , Osteogênese/efeitos dos fármacos , Fenótipo , Fator de Transcrição RelA/metabolismo
19.
Sci Rep ; 11(1): 1666, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462315

RESUMO

Autophagy is a cellular degradation system contributing to homeostasis of tissue stem cells including haematopoietic stem cells (HSCs). It plays pleiotropic roles in HSC characteristics throughout life, but its stage-specific roles in HSC self-renewal are unclear. To investigate the effects of Atg5 deletion on stage-specific HSC functions, we compared the repopulating capacity of HSCs in Atg5f/f;Vavi-cre mice from postnatal day (P) 0-7 weeks of age. Interestingly, Atg5 deficiency led to no remarkable abnormality in the HSC self-renewal capacity at P0, but significant defects at P7, followed by severe defects. Induction of Atg5 deletion at P5 by tamoxifen administration to Atg5f/f;Rosa26-Cre-ERT2 mice resulted in normal haematopoiesis, including the HSC population, until around 1 year, suggesting that Atg5 in the early neonatal period was critical for haematopoiesis in adults. Mitochondrial oxidative stress was increased by Atg5 loss in neonatal HSC/progenitor cells. Although p62 had accumulated in immature bone marrow cells of Atg5f/f;Vavi-cre mice, p62 deletion did not restore defective HSC functions, indicating that Atg5-dependent haematopoietic regulation in the developmental period was independent of p62. This study proposes a critical role of autophagy in HSC protection against harsh environments in the early neonatal stage, which is essential for healthy long-term haematopoiesis.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Animais Recém-Nascidos , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia/genética , Modelos Animais de Doenças , Feminino , Células-Tronco Hematopoéticas/patologia , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia
20.
Case Rep Orthop ; 2020: 8853453, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850168

RESUMO

Distal trochanteric transfer (DTT) has been widely performed to treat developmental dysplasia of the hip or Perthes disease. Total hip arthroplasty (THA) following DTT in patients with hip osteoarthritis is one of the most challenging procedures for hip surgeons, because great care must be taken regarding anatomical abnormalities of the greater trochanter and the soft tissue attached to the greater trochanter. To the best of our knowledge, there are no reports on THA after DTT. We herein report two cases of patients who underwent THA post DTT using cementless components. After THA, both patients developed abduction temporary contraction because of leg length extension and gluteus medius hypertension. However, in both cases, the contraction was reversible within two months and the final clinical result was good. Therefore, THA can be considered an effective and safe choice for treating osteoarthritis after DTT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA