Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 36(1): 103-112, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29176613

RESUMO

Bacterial cell envelope protein (CEP) complexes mediate a range of processes, including membrane assembly, antibiotic resistance and metabolic coordination. However, only limited characterization of relevant macromolecules has been reported to date. Here we present a proteomic survey of 1,347 CEPs encompassing 90% inner- and outer-membrane and periplasmic proteins of Escherichia coli. After extraction with non-denaturing detergents, we affinity-purified 785 endogenously tagged CEPs and identified stably associated polypeptides by precision mass spectrometry. The resulting high-quality physical interaction network, comprising 77% of targeted CEPs, revealed many previously uncharacterized heteromeric complexes. We found that the secretion of autotransporters requires translocation and the assembly module TamB to nucleate proper folding from periplasm to cell surface through a cooperative mechanism involving the ß-barrel assembly machinery. We also establish that an ABC transporter of unknown function, YadH, together with the Mla system preserves outer membrane lipid asymmetry. This E. coli CEP 'interactome' provides insights into the functional landscape governing CE systems essential to bacterial growth, metabolism and drug resistance.


Assuntos
Membrana Celular/genética , Escherichia coli/genética , Complexos Multiproteicos/genética , Proteômica , Membrana Celular/química , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/classificação
2.
IEEE/ACM Trans Comput Biol Bioinform ; 14(5): 1082-1093, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26812731

RESUMO

The human genome contains a large number of protein polymorphisms due to individual genome variation. How many of these polymorphisms lead to altered protein-protein interaction is unknown. We have developed a method to address this question. The intersection of the SKEMPI database (of affinity constants among interacting proteins) and CAPRI 4.0 docking benchmark was docked using HADDOCK, leading to a training set of 166 mutant pairs. A random forest classifier based on the differences in resulting docking scores between the 166 mutant pairs and their wild-types was used, to distinguish between variants that have either completely or partially lost binding ability. Fifty percent of non-binders were correctly predicted with a false discovery rate of only 2 percent. The model was tested on a set of 15 HIV-1 - human, as well as seven human- human glioblastoma-related, mutant protein pairs: 50 percent of combined non-binders were correctly predicted with a false discovery rate of 10 percent. The model was also used to identify 10 protein-protein interactions between human proteins and their HIV-1 partners that are likely to be abolished by rare non-synonymous single-nucleotide polymorphisms (nsSNPs). These nsSNPs may represent novel and potentially therapeutically-valuable targets for anti-viral therapy by disruption of viral binding.


Assuntos
Biologia Computacional/métodos , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Humanos , Aprendizado de Máquina , Modelos Estatísticos , Simulação de Acoplamento Molecular
3.
mSystems ; 1(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822522

RESUMO

The investigation of host-pathogen interaction interfaces and their constituent factors is crucial for our understanding of an organism's pathogenesis. Here, we explored the interactomes of HIV, hepatitis C virus, influenza A virus, human papillomavirus, herpes simplex virus, and vaccinia virus in a human host by analyzing the combined sets of virus targets and human genes that are required for viral infection. We also considered targets and required genes of bacteriophages lambda and T7 infection in Escherichia coli. We found that targeted proteins and their immediate network neighbors significantly pool with proteins required for infection and essential for cell growth, forming large connected components in both the human and E. coli protein interaction networks. The impact of both viruses and phages on their protein targets appears to extend to their network neighbors, as these are enriched with topologically central proteins that have a significant disruptive topological effect and connect different protein complexes. Moreover, viral and phage targets and network neighbors are enriched with transcription factors, methylases, and acetylases in human viruses, while such interactions are much less prominent in bacteriophages. IMPORTANCE While host-virus interaction interfaces have been previously investigated, relatively little is known about the indirect interactions of pathogen and host proteins required for viral infection and host cell function. Therefore, we investigated the topological relationships of human and bacterial viruses and how they interact with their hosts. We focused on those host proteins that are directly targeted by viruses, those that are required for infection, and those that are essential for both human and bacterial cells (here, E. coli). Generally, we observed that targeted, required, and essential proteins in both hosts interact in a highly intertwined fashion. While there exist highly similar topological patterns, we found that human viruses target transcription factors through methylases and acetylases, proteins that played no such role in bacteriophages.

4.
Mol Cell Proteomics ; 13(5): 1318-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24627523

RESUMO

Helicobacter pylori infections cause gastric ulcers and play a major role in the development of gastric cancer. In 2001, the first protein interactome was published for this species, revealing over 1500 binary protein interactions resulting from 261 yeast two-hybrid screens. Here we roughly double the number of previously published interactions using an ORFeome-based, proteome-wide yeast two-hybrid screening strategy. We identified a total of 1515 protein-protein interactions, of which 1461 are new. The integration of all the interactions reported in H. pylori results in 3004 unique interactions that connect about 70% of its proteome. Excluding interactions of promiscuous proteins we derived from our new data a core network consisting of 908 interactions. We compared our data set to several other bacterial interactomes and experimentally benchmarked the conservation of interactions using 365 protein pairs (interologs) of E. coli of which one third turned out to be conserved in both species.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Sequência de Aminoácidos , Sequência Conservada , Fases de Leitura Aberta , Proteoma/análise , Proteômica , Técnicas do Sistema de Duplo-Híbrido
5.
J Bacteriol ; 193(2): 551-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097633

RESUMO

Streptococcus pneumoniae causes several diseases, including pneumonia, septicemia, and meningitis. Phage Dp-1 is one of the very few isolated virulent S. pneumoniae bacteriophages, but only a partial characterization is currently available. Here, we confirmed that Dp-1 belongs to the family Siphoviridae. Then, we determined its complete genomic sequence of 56,506 bp. It encodes 72 open reading frames, of which 44 have been assigned a function. We have identified putative promoters, Rho-independent terminators, and several genomic clusters. We provide evidence that Dp-1 may be using a novel DNA replication system as well as redirecting host protein synthesis through queuosine-containing tRNAs. Liquid chromatography-mass spectrometry analysis of purified phage Dp-1 particles identified at least eight structural proteins. Finally, using comprehensive yeast two-hybrid screens, we identified 156 phage protein interactions, and this intraviral interactome was used to propose a structural model of Dp-1.


Assuntos
Genoma Viral , Fagos de Streptococcus/genética , Streptococcus pneumoniae/virologia , Cromatografia Líquida , Replicação do DNA , DNA Viral/química , DNA Viral/genética , Ordem dos Genes , Genes Virais , Espectrometria de Massas , Dados de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Análise de Sequência de DNA , Siphoviridae/classificação , Siphoviridae/ultraestrutura , Fagos de Streptococcus/classificação , Fagos de Streptococcus/ultraestrutura , Regiões Terminadoras Genéticas , Proteínas Estruturais Virais/análise
6.
PLoS Pathog ; 5(9): e1000570, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19730696

RESUMO

Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species.


Assuntos
Herpesviridae/genética , Mapeamento de Interação de Proteínas/métodos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Análise por Conglomerados , Evolução Molecular , Células HeLa , Herpesviridae/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 3/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Imuno-Histoquímica , Muromegalovirus/genética , Filogenia , Transdução de Sinais , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Vírion/metabolismo
7.
BMC Biochem ; 9: 29, 2008 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19014439

RESUMO

BACKGROUND: The FF domain is conserved across all eukaryotes and usually acts as an adaptor module in RNA metabolism and transcription. Saccharomyces cerevisiae encodes two FF domain proteins, Prp40, a component of the U1 snRNP, and Ypr152c, a protein of unknown function. The structure of Prp40, its relationship to other proteins within the U1 snRNP, and its precise function remain little understood. RESULTS: Here we have investigated the essentiality and interaction properties of the FF domains of yeast Prp40. We show that the C-terminal two FF domains of Prp40 are dispensable. Deletion of additional FF domains is lethal. The first FF domain of Prp40 binds to U1 protein Luc7 in yeast two-hybrid and GST pulldown experiments. FF domains 2 and 3 bind to Snu71, another known U1 protein. Peptide array screens identified binding sites for FF1-2 within Snu71 (NDVHY) and for FF1 within Luc7 (phi[FHL] x [KR] x [GHL] with phi being a hydrophobic amino acid). CONCLUSION: Prp40, Luc7, and Snu71 appear to form a subcomplex within the yeast U1snRNP. Our data suggests that the N-terminal FF domains are critical for these interactions. Crystallization of Prp40, Luc7, and Snu71 have failed so far but co-crystallization of pairs or the whole tri-complex may facilitate crystallographic and further functional analysis.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Sítios de Ligação , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U2/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
8.
FEMS Microbiol Lett ; 270(1): 49-57, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17286574

RESUMO

House-cleaning enzymes protect cells from the adverse effects of noncanonical metabolic chemical compounds. The Escherichia coli nucleotide phosphatase YjjG (B4374, JW4336) functions as a house-cleaning phosphatase in vivo. YjjG protects the cell against noncanonical pyrimidine derivatives such as 5-fluoro-2'-deoxyuridine (5-FdUridine), 5-fluorouridine, 5-fluoroorotic acid (5-FOA), 5-fluorouracil, and 5-aza-2'-deoxycytidine. YjjG prevents the incorporation of potentially mutagenic nucleotides into DNA as shown for 5-bromo-2'-deoxyuridine (BrdU). Its enzymatic activity in vitro towards noncanonical 5-fluoro-2'-deoxyuridine monophosphate (5-FdUMP) is higher than towards canonical thymidine monophosphate (dTMP). The closest homolog in humans, HDHD4, does not show a protective effect against noncanonical nucleotides, excluding an involvement of HDHD4 in resistance against noncanonical nucleotides used for cancer chemotherapy. The substrate spectrum of YjjG suggests that its in vivo substrates are noncanonical pyrimidine derivatives, which might also include oxidized nucleobases such as 5-formyluracil and 5-hydroxyuracil.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , N-Glicosil Hidrolases/metabolismo , Nucleotidases/metabolismo , Azacitidina/análogos & derivados , Azacitidina/química , Azacitidina/farmacologia , Bromodesoxiuridina/farmacologia , Dano ao DNA , Decitabina , Desoxiuridina/química , Desoxiuridina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fluoruracila/química , Fluoruracila/farmacologia , Modelos Biológicos , Estrutura Molecular , Mutação , N-Glicosil Hidrolases/genética , Nucleotidases/genética , Ácido Orótico/análogos & derivados , Ácido Orótico/química , Ácido Orótico/farmacologia , Especificidade por Substrato , Timidina Monofosfato/química , Timidina Monofosfato/farmacologia , Uridina/análogos & derivados , Uridina/química , Uridina/farmacologia
10.
Science ; 311(5758): 239-42, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16339411

RESUMO

The comprehensive yeast two-hybrid analysis of intraviral protein interactions in two members of the herpesvirus family, Kaposi sarcoma-associated herpesvirus (KSHV) and varicella-zoster virus (VZV), revealed 123 and 173 interactions, respectively. Viral protein interaction networks resemble single, highly coupled modules, whereas cellular networks are organized in separate functional submodules. Predicted and experimentally verified interactions between KSHV and human proteins were used to connect the viral interactome into a prototypical human interactome and to simulate infection. The analysis of the combined system showed that the viral network adopts cellular network features and that protein networks of herpesviruses and possibly other intracellular pathogens have distinguishing topologies.


Assuntos
Herpesvirus Humano 3/metabolismo , Herpesvirus Humano 8/metabolismo , Proteoma/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Clonagem Molecular , Humanos , Fases de Leitura Aberta , Ligação Proteica , Biologia de Sistemas , Técnicas do Sistema de Duplo-Híbrido
11.
Genome Res ; 14(10B): 2029-33, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15489322

RESUMO

Although cloned viral ORFeomes are particularly well suited for genome-wide interaction mapping due to the limited size of viral genomes, only a few such studies have been published. Here, we summarize virus interaction mapping projects involving vaccinia virus, hepatitis C virus (HCV), potato virus A (PVA), pea seed-borne mosaic virus (PSbMV), and bacteriophage T7, as well as some projects in progress. The studies reported suggest that virus-specific coding and replication strategies must be taken into account to yield accurate numbers of protein interactions. In particular, the number of false negatives can be significant for RNA viruses expressing precursor polyproteins (because interactions between full-length mature proteins are often not detected due to incorrect processing) and for viruses replicating in the cytoplasm whose transcripts have not been selected for splicing signals. In conclusion, the studies on viral protein interaction maps suggest that cloned pathogen ORFeomes will contribute to a holistic picture of the pathogenesis of infectious diseases and are ideal starting points for new approaches in systems biology. Both viral ORFeome and interaction mapping projects are being documented on our Web site (http://itgmv1.fzk.de/www/itg/uetz/virus/).


Assuntos
Clonagem Molecular/métodos , Genoma Viral , Fases de Leitura Aberta/fisiologia , Mapeamento de Interação de Proteínas/métodos , Proteínas Virais/metabolismo , Vírus , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA