Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125632

RESUMO

The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin. This study aims to elucidate the role of PACAP as an actin-regulating polypeptide, its effect on actin filament formation, and the underlying regulatory mechanisms. We examined PACAP27, PACAP38, and PACAP6-38, measuring their binding to actin monomers via fluorescence spectroscopy and steady-state anisotropy. Functional polymerization tests were used to track changes in fluorescent intensity over time. Unlike PACAP27, PACAP38 and PACAP6-38 significantly reduced the fluorescence emission of Alexa488-labeled actin monomers and increased their anisotropy, showing nearly identical dissociation equilibrium constants. PACAP27 showed weak binding to globular actin (G-actin), while PACAP38 and PACAP6-38 exhibited robust interactions. PACAP27 did not affect actin polymerization, but PACAP38 and PACAP6-38 accelerated actin incorporation kinetics. Fluorescence quenching experiments confirmed structural changes upon PACAP binding; however, all studied PACAP fragments exhibited the same effect. Our findings indicate that PACAP38 and PACAP6-38 strongly bind to G-actin and significantly influence actin polymerization. Further studies are needed to fully understand the biological significance of these interactions.


Assuntos
Actinas , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Espectrometria de Fluorescência , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Actinas/metabolismo , Actinas/química , Animais , Espectrometria de Fluorescência/métodos , Citoesqueleto/metabolismo , Ligação Proteica , Citoesqueleto de Actina/metabolismo , Humanos , Cinética
2.
J Fluoresc ; 33(5): 2099-2103, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36988781

RESUMO

INTRODUCTION: Indocyanine green is a fluorescent dye, the use of which is becoming more and more widespread in different areas of surgery. Several international studies deal with the dye's usefulness in intraoperative angiography, the localization of tumors, the more precise identification of anatomical structures, the detection of lymph nodes and lymph ducts, etc. The application of the dye is safe, but a suitable equipment park is required for its use, which entails relatively high costs. OBJECTIVES: The aim of our research is to create a detector system on a low budget, to be used safely in everyday practice and to illustrate its operation with practical examples at our own institute. METHODS: By modifying a web camera, using filter lenses and special LEDs, we created a device suitable for exciting and detecting indocyanine green fluorescence. We prove its excellent versatility during the following procedures at our institute: breast tumor surgery, kidney transplantation, bowel resection, parathyroid surgery and liver tumor resection. RESULTS: The finished camera has an LED light source with a peak wavelength of 780 nm, and the incoming light is filtered by a bandpass filter with a center wavelength of 832 nm. A low budget ($112), easy-to-use tool was created, which is suitable for taking advantage of the opportunities provided by indocyanine green.


Assuntos
Verde de Indocianina , Neoplasias , Humanos , Linfonodos/patologia , Linfonodos/cirurgia , Angiografia/métodos , Corantes Fluorescentes , Neoplasias/patologia , Imagem Óptica/métodos
3.
Polymers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322322

RESUMO

Currently, 3D printing is an affordable technology for industry, healthcare, and individuals. Understanding the mechanical properties and thermoplastic behaviour of the composites is critical for the users. Our results give guidance for certain target groups including professionals in the field of additive manufacturing for biomedical components with in-depth characterisation of the examined commercially available ABS and PLA carbon-based composites. The study aimed to characterize these materials in terms of thermal behaviour and structure. The result of the heating-cooling loops is the thermal hysteresis effect of Ohmic resistance with its accommodation property in the temperature range of 20-84 °C for ESD-ABS and 20-72 °C for ESD-PLA. DSC-TGA measurements showed that the carbon content of the examined ESD samples is ~10-20% (m/m) and there is no significant difference in the thermodynamic behaviour of the basic ABS/PLA samples and their ESD compounds within the temperature range typically used for 3D printing. The results support the detailed design process of 3D-printed electrical components and prove that ABS and PLA carbon composites are suitable for prototyping and the production of biomedical sensors.

4.
Anal Biochem ; 581: 113338, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201789

RESUMO

Stopped-flow spectroscopy is a powerful method for measuring very fast biological and chemical reactions. The technique however is often limited by the volumes of reactants needed to load the system. Here we present a simple adaptation of commercial stopped-flow system that reduces the volume needed by a factor of 4 to ≈120 µl. After evaluation the volume requirements of the system we show that many standard myosin based assays can be performed using <100 µg of myosin. This adaptation both reduces the volume and therefore mass of protein required and also produces data of similar quality to that produced using the standard set up. The 100 µg of myosin required for these assays is less than that which can be isolated from 100 mg of muscle tissue. With this reduced quantity of myosin, assays using biopsy samples become possible. This will allow assays to be used to assist diagnoses, to examine the effects of post translational modifications on muscle proteins and to test potential therapeutic drugs using patient derived samples.


Assuntos
Miosinas/análise , Análise Espectral , Animais , Humanos , Coelhos
5.
J Biol Chem ; 293(23): 9017-9029, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29666183

RESUMO

Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can cause arrhythmias, heart failure, and cardiac death. Here, we functionally characterized the motor domains of five DCM-causing mutations in human ß-cardiac myosin. Kinetic analyses of the individual events in the ATPase cycle revealed that each mutation alters different steps in this cycle. For example, different mutations gave enhanced or reduced rate constants of ATP binding, ATP hydrolysis, or ADP release or exhibited altered ATP, ADP, or actin affinity. Local effects dominated, no common pattern accounted for the similar mutant phenotype, and there was no distinct set of changes that distinguished DCM mutations from previously analyzed HCM myosin mutations. That said, using our data to model the complete ATPase contraction cycle revealed additional critical insights. Four of the DCM mutations lowered the duty ratio (the ATPase cycle portion when myosin strongly binds actin) because of reduced occupancy of the force-holding A·M·D complex in the steady state. Under load, the A·M·D state is predicted to increase owing to a reduced rate constant for ADP release, and this effect was blunted for all five DCM mutations. We observed the opposite effects for two HCM mutations, namely R403Q and R453C. Moreover, the analysis predicted more economical use of ATP by the DCM mutants than by WT and the HCM mutants. Our findings indicate that DCM mutants have a deficit in force generation and force-holding capacity due to the reduced occupancy of the force-holding state.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Dilatada/genética , Cadeias Pesadas de Miosina/genética , Mutação Puntual , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Cardiomiopatia Dilatada/metabolismo , Linhagem Celular , Humanos , Cinética , Camundongos , Modelos Moleculares , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Domínios Proteicos
6.
PLoS One ; 12(10): e0186288, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023566

RESUMO

Leiomodin proteins are vertebrate homologues of tropomodulin, having a role in the assembly and maintenance of muscle thin filaments. Leiomodin2 contains an N-terminal tropomodulin homolog fragment including tropomyosin-, and actin-binding sites, and a C-terminal Wiskott-Aldrich syndrome homology 2 actin-binding domain. The cardiac leiomodin2 isoform associates to the pointed end of actin filaments, where it supports the lengthening of thin filaments and competes with tropomodulin. It was recently found that cardiac leiomodin2 can localise also along the length of sarcomeric actin filaments. While the activities of leiomodin2 related to pointed end binding are relatively well described, the potential side binding activity and its functional consequences are less well understood. To better understand the biological functions of leiomodin2, in the present work we analysed the structural features and the activities of Rattus norvegicus cardiac leiomodin2 in actin dynamics by spectroscopic and high-speed sedimentation approaches. By monitoring the fluorescence parameters of leiomodin2 tryptophan residues we found that it possesses flexible, intrinsically disordered regions. Leiomodin2 accelerates the polymerisation of actin in an ionic strength dependent manner, which relies on its N-terminal regions. Importantly, we demonstrate that leiomodin2 binds to the sides of actin filaments and induces structural alterations in actin filaments. Upon its interaction with the filaments leiomodin2 decreases the actin-activated Mg2+-ATPase activity of skeletal muscle myosin. These observations suggest that through its binding to side of actin filaments and its effect on myosin activity leiomodin2 has more functions in muscle cells than it was indicated in previous studies.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/fisiologia , Miosinas/fisiologia , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Animais , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Miosinas/química , Miosinas/metabolismo , Estrutura Terciária de Proteína , Ratos , Análise de Sequência de Proteína
7.
Biophys J ; 112(5): 984-996, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297657

RESUMO

Modeling the complete actin.myosin ATPase cycle has always been limited by the lack of experimental data concerning key steps of the cycle, because these steps can only be defined at very low ionic strength. Here, using human ß-cardiac myosin-S1, we combine published data from transient and steady-state kinetics to model a minimal eight-state ATPase cycle. The model illustrates the occupancy of each intermediate around the cycle and how the occupancy is altered by changes in actin concentration for [actin] = 1-20Km. The cycle can be used to predict the maximal velocity of contraction (by motility assay or sarcomeric shortening) at different actin concentrations (which is consistent with experimental velocity data) and predict the effect of a 5 pN load on a single motor. The same exercise was repeated for human α-cardiac myosin S1 and rabbit fast skeletal muscle S1. The data illustrates how the motor domain properties can alter the ATPase cycle and hence the occupancy of the key states in the cycle. These in turn alter the predicted mechanical response of the myosin independent of other factors present in a sarcomere, such as filament stiffness and regulatory proteins. We also explore the potential of this modeling approach for the study of mutations in human ß-cardiac myosin using the hypertrophic myopathy mutation R453C. Our modeling, using the transient kinetic data, predicts mechanical properties of the motor that are compatible with the single-molecule study. The modeling approach may therefore be of wide use for predicting the properties of myosin mutations.


Assuntos
Actinas/metabolismo , Miosinas Cardíacas/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Miosinas Cardíacas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligação Proteica , Isoformas de Proteínas/metabolismo
8.
Biochim Biophys Acta ; 1860(9): 1942-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27297907

RESUMO

BACKGROUND: Weil's syndrome is caused by Leptospira interrogans infections, a Gram negative bacterium with a distinct thin corkscrew cell shape. The molecular basis for this unusual morphology is unknown. In many bacteria, cell wall synthesis is orchestrated by the actin homolog, MreB. METHODS: Here we have identified the MreB within the L. interrogans genome and expressed the His-tagged protein product of the synthesized gene (Li-MreB) in Escherichia coli. Li-MreB did not purify under standard nucleotide-free conditions used for MreBs from other species, requiring the continual presence of ATP to remain soluble. Covalent modification of Li-MreB free thiols with Alexa488 produced a fluorescent version of Li-MreB. RESULTS: We developed native and denaturing/refolding purification schemes for Li-MreB. The purified product was shown to assemble and disassemble in MgCl2 and KCl dependent manners, as monitored by light scattering and sedimentation studies. The fluorescence spectrum of labeled Li-MreB-Alexa488 showed cation-induced changes in line with an activation process followed by a polymerization phase. The resulting filaments appeared as bundles and sheets under the fluorescence microscope. Finally, since the Li-MreB polymerization was cation dependent, we developed a simple method to measure monovalent cation concentrations within a test case prokaryote, E. coli. CONCLUSIONS: We have identified and initially characterized the cation-dependent polymerization properties of a novel MreB from a non-rod shaped bacterium and developed a method to measure cation concentrations within prokaryotes. GENERAL SIGNIFICANCE: This initial characterization of Li-MreB will enable future structural determination of the MreB filament from this corkscrew-shaped bacterium.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Leptospira interrogans/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Cátions/metabolismo , Parede Celular/metabolismo , Escherichia coli , Genoma Bacteriano/genética , Leptospira interrogans/genética , Leptospirose/microbiologia , Microscopia de Fluorescência/métodos , Nucleotídeos/metabolismo , Polimerização
9.
J Exp Biol ; 219(Pt 2): 168-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26792327

RESUMO

At the latest count the myosin family includes 35 distinct groups, all of which have the conserved myosin motor domain attached to a neck or lever arm, followed by a highly variable tail or cargo binding region. The motor domain has an ATPase activity that is activated by the presence of actin. One feature of the myosin ATPase cycle is that it involves an association/dissociation with actin for each ATP hydrolysed. The cycle has been described in detail for a large number of myosins from different classes. In each case the cycle is similar, but the balance between the different molecular events in the cycle has been altered to produce a range of very different mechanical activities. Myosin may spend most of the ATPase cycle attached to actin (high duty ratio), as in the processive myosin (e.g. myosin V) or the strain-sensing myosins (e.g. myosin 1c). In contrast, most muscle myosins spend 80% of their ATPase cycle detached from actin. Within the myosin IIs found in human muscle, there are 11 different sarcomeric myosin isoforms, two smooth muscle isoforms as well as three non-muscle isoforms. We have been exploring how the different myosin isoforms have adapted the cross-bridge cycle to generate different types of mechanical activity and how this goes wrong in inherited myopathies. The ideas are outlined here.


Assuntos
Miosinas/metabolismo , Sarcômeros/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Humanos , Modelos Biológicos , Isoformas de Proteínas/metabolismo
10.
Sci Adv ; 1(9): e1500511, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26601291

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human ß-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human ß-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human ß-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca(2+)-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human ß-cardiac myosin contractility as a result of the R403Q mutation.

11.
J Biol Chem ; 287(38): 31894-904, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22753415

RESUMO

The conformational elasticity of the actin cytoskeleton is essential for its versatile biological functions. Increasing evidence supports that the interplay between the structural and functional properties of actin filaments is finely regulated by actin-binding proteins; however, the underlying mechanisms and biological consequences are not completely understood. Previous studies showed that the binding of formins to the barbed end induces conformational transitions in actin filaments by making them more flexible through long range allosteric interactions. These conformational changes are accompanied by altered functional properties of the filaments. To get insight into the conformational regulation of formin-nucleated actin structures, in the present work we investigated in detail how binding partners of formin-generated actin structures, myosin and tropomyosin, affect the conformation of the formin-nucleated actin filaments using fluorescence spectroscopic approaches. Time-dependent fluorescence anisotropy and temperature-dependent Förster-type resonance energy transfer measurements revealed that heavy meromyosin, similarly to tropomyosin, restores the formin-induced effects and stabilizes the conformation of actin filaments. The stabilizing effect of heavy meromyosin is cooperative. The kinetic analysis revealed that despite the qualitatively similar effects of heavy meromyosin and tropomyosin on the conformational dynamics of actin filaments the mechanisms of the conformational transition are different for the two proteins. Heavy meromyosin stabilizes the formin-nucleated actin filaments in an apparently single step reaction upon binding, whereas the stabilization by tropomyosin occurs after complex formation. These observations support the idea that actin-binding proteins are key elements of the molecular mechanisms that regulate the conformational and functional diversity of actin filaments in living cells.


Assuntos
Citoesqueleto de Actina/química , Miosinas/química , Tropomiosina/química , Actinas/química , Animais , Anisotropia , Citoesqueleto/metabolismo , Proteínas Fetais/química , Transferência Ressonante de Energia de Fluorescência/métodos , Forminas , Cinética , Proteínas dos Microfilamentos/química , Microscopia de Fluorescência/métodos , Modelos Moleculares , Conformação Molecular , Músculo Esquelético/metabolismo , Proteínas Nucleares/química , Conformação Proteica , Coelhos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA