Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Z Med Phys ; 34(1): 64-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37669888

RESUMO

Task Group 115 of the International Commission on Radiological Protection is focusing on mission-related exposures to space radiation and concomitant health risks for space crew members including, among others, risk of cancer development. Uncertainties in cumulative radiation risk estimates come from the stochastic nature of the considered health outcome (i.e., cancer), uncertainties of statistical inference and model parameters, unknown secular trends used for projections of population statistics and unknown variability of survival properties between individuals or population groups. The variability of survival is usually ignored when dealing with large groups, which can be assumed well represented by the statistical data for the contemporary general population, either in a specific country or world averaged. Space crew members differ in many aspects from individuals represented by the general population, including, for example, their lifestyle and health status, nutrition, medical care, training and education. The individuality of response to radiation and lifespan is explored in this modelling study. Task Group 115 is currently evaluating applicability and robustness of various risk metrics for quantification of radiation-attributed risks of cancer for space crew members. This paper demonstrates the impact of interpopulation variability of survival curves on values and uncertainty of the estimates of the time-integrated radiation risk of cancer.


Assuntos
Neoplasias Induzidas por Radiação , Proteção Radiológica , Humanos , Medição de Risco , Incerteza , Probabilidade
2.
Radiat Environ Biophys ; 62(1): 1-15, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36633666

RESUMO

The probability that an observed cancer was caused by radiation exposure is usually estimated using cancer rates and risk models from radioepidemiological cohorts and is called assigned share (AS). This definition implicitly assumes that an ongoing carcinogenic process is unaffected by the studied radiation exposure. However, there is strong evidence that radiation can also accelerate an existing clonal development towards cancer. In this work, we define different association measures that an observed cancer was newly induced, accelerated, or retarded. The measures were quantified exemplarily by Monte Carlo simulations that track the development of individual cells. Three biologically based two-stage clonal expansion (TSCE) models were applied. In the first model, radiation initiates cancer development, while in the other two, radiation has a promoting effect, i.e. radiation accelerates the clonal expansion of pre-cancerous cells. The parameters of the TSCE models were derived from breast cancer data from the atomic bomb survivors of Hiroshima and Nagasaki. For exposure at age 30, all three models resulted in similar estimates of AS at age 60. For the initiation model, estimates of association were nearly identical to AS. However, for the promotion models, the cancerous clonal development was frequently accelerated towards younger ages, resulting in associations substantially higher than AS. This work shows that the association between a given cancer and exposure in an affected person depends on the underlying biological mechanism and can be substantially larger than the AS derived from classic radioepidemiology.


Assuntos
Neoplasias Induzidas por Radiação , Guerra Nuclear , Humanos , Adulto , Pessoa de Meia-Idade , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Modelos Biológicos , Carcinogênese , Radiação Ionizante , Japão
3.
Radiat Environ Biophys ; 60(3): 459-474, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34275005

RESUMO

In breast cancer radiotherapy, substantial radiation exposure of organs other than the treated breast cannot be avoided, potentially inducing second primary cancer or heart disease. While distant organs and large parts of nearby ones receive doses in the mGy-Gy range, small parts of the heart, lung and bone marrow often receive doses as high as 50 Gy. Contemporary treatment planning allows for considerable flexibility in the distribution of this exposure. To optimise treatment with regards to long-term health risks, evidence-based risk estimates are required for the entire broad range of exposures. Here, we thus propose an approach that combines data from medical and epidemiological studies with different exposure conditions. Approximating cancer induction as a local process, we estimate organ cancer risks by integrating organ-specific dose-response relationships over the organ dose distributions. For highly exposed organ parts, specific high-dose risk models based on studies with medical exposure are applied. For organs or their parts receiving relatively low doses, established dose-response models based on radiation-epidemiological data are used. Joining the models in the intermediate dose range leads to a combined, in general non-linear, dose response supported by data over the whole relevant dose range. For heart diseases, a linear model consistent with high- and low-dose studies is presented. The resulting estimates of long-term health risks are largely compatible with rate ratios observed in randomised breast cancer radiotherapy trials. The risk models have been implemented in a software tool PASSOS that estimates long-term risks for individual breast cancer patients.


Assuntos
Neoplasias da Mama/radioterapia , Modelos Teóricos , Relação Dose-Resposta à Radiação , Feminino , Cardiopatias , Humanos , Leucemia , Neoplasias Pulmonares , Medição de Risco , Fumar , Software
4.
Radiat Environ Biophys ; 60(2): 213-231, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33929575

RESUMO

An alternative approach that is particularly suitable for the radiation health risk assessment (HRA) of astronauts is presented. The quantity, Radiation Attributed Decrease of Survival (RADS), representing the cumulative decrease in the unknown survival curve at a certain attained age, due to the radiation exposure at an earlier age, forms the basis for this alternative approach. Results are provided for all solid cancer plus leukemia incidence RADS from estimated doses from theoretical radiation exposures accumulated during long-term missions to the Moon or Mars. For example, it is shown that a 1000-day Mars exploration mission with a hypothetical mission effective dose of 1.07 Sv at typical astronaut ages around 40 years old, will result in the probability of surviving free of all types of solid cancer and leukemia until retirement age (65 years) being reduced by 4.2% (95% CI 3.2; 5.3) for males and 5.8% (95% CI 4.8; 7.0) for females. RADS dose-responses are given, for the outcomes for incidence of all solid cancer, leukemia, lung and female breast cancer. Results showing how RADS varies with age at exposure, attained age and other factors are also presented. The advantages of this alternative approach, over currently applied methodologies for the long-term radiation protection of astronauts after mission exposures, are presented with example calculations applicable to European astronaut occupational HRA. Some tentative suggestions for new types of occupational risk limits for space missions are given while acknowledging that the setting of astronaut radiation-related risk limits will ultimately be decided by the Space Agencies. Suggestions are provided for further work which builds on and extends this new HRA approach, e.g., by eventually including non-cancer effects and detailed space dosimetry.


Assuntos
Neoplasias Induzidas por Radiação/epidemiologia , Doenças Profissionais/epidemiologia , Medição de Risco/métodos , Voo Espacial , Adulto , Idoso , Idoso de 80 Anos ou mais , Astronautas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Exposição Ocupacional , Exposição à Radiação , Proteção Radiológica
5.
Radiat Environ Biophys ; 59(4): 601-629, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32851496

RESUMO

ProZES is a software tool for estimating the probability that a given cancer was caused by preceding exposure to ionising radiation. ProZES calculates this probability, the assigned share, for solid cancers and hematopoietic malignant diseases, in cases of exposures to low-LET radiation, and for lung cancer in cases of exposure to radon. User-specified inputs include birth year, sex, type of diagnosed cancer, age at diagnosis, radiation exposure history and characteristics, and smoking behaviour for lung cancer. Cancer risk models are an essential part of ProZES. Linking disease and exposure to radiation involves several methodological aspects, and assessment of uncertainties received particular attention. ProZES systematically uses the principle of multi-model inference. Models of radiation risk were either newly developed or critically re-evaluated for ProZES, including dedicated models for frequent types of cancer and, for less common diseases, models for groups of functionally similar cancer sites. The low-LET models originate mostly from the study of atomic bomb survivors in Hiroshima and Nagasaki. Risks predicted by these models are adjusted to be applicable to the population of Germany and to different time periods. Adjustment factors for low dose rates and for a reduced risk during the minimum latency time between exposure and cancer are also applied. The development of the methodology and software was initiated and supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) taking up advice by the German Commission on Radiological Protection (SSK, Strahlenschutzkommission). These provide the scientific basis to support decision making on compensation claims regarding malignancies following occupational exposure to radiation in Germany.


Assuntos
Modelos Teóricos , Neoplasias Induzidas por Radiação/etiologia , Exposição à Radiação/efeitos adversos , Software , Alemanha , Humanos , Probabilidade , Medição de Risco
6.
Radiat Environ Biophys ; 58(4): 539-552, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31346699

RESUMO

Current radiological emergency response recommendations have been provided by the International Commission on Radiological Protection and adopted by the International Atomic Energy Agency in comprehensive Safety Standards. These standards provide dose-based guidance for decision making (e.g., on sheltering or relocation) via generic criteria in terms of effective dose in the range from 20 mSv per year, during transition from emergency to existing exposure situation, to 100 mSv, acute or annual, in the urgent phase of a nuclear accident. The purpose of this paper was to examine how such dose reference levels directly translate into radiation-related risks of the main stochastic detrimental health effects (cancer). Methodologies, provided by the World Health Organization after the Fukushima accident, for calculating the lifetime and 20 year cancer risks and for attributing relevant organ doses from effective doses, have been applied here for this purpose with new software, designed to be available for use immediately after a nuclear accident. A new feature in this software is a comprehensive accounting for uncertainty via simulation technique, so that the risks may now be presented with realistic confidence intervals. The types of cancer risks considered here are time-integrated over lifetime and the first 20 years after exposure for all solid cancers and either the most radiation-sensitive types of cancer, i.e., leukaemia and female breast cancer, or the most radiation-relevant type of cancer occurring early in life, i.e., thyroid. It is demonstrated here how reference dose levels translate differently into specific cancer risk levels (with varying confidence interval sizes), depending on age at exposure, gender, time-frame at-risk and type of cancer considered. This demonstration applies German population data and considers external exposures. Further work is required to comprehensively extend this methodology to internal exposures that are likely to be important in the early stages of a nuclear accident. A discussion is provided here on the potential for such risk-based information to be used by decision makers, in the urgent and transition phases of nuclear emergencies, to identify protective measures (e.g., sheltering, evacuation) in a differential way (i.e., for particularly susceptible sub-groups of a population).


Assuntos
Emergências , Proteção Radiológica/métodos , Humanos , Agências Internacionais , Doses de Radiação , Monitoramento de Radiação , Fatores de Risco
7.
Radiat Environ Biophys ; 58(3): 305-319, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31006050

RESUMO

The problem of expressing cumulative detrimental effect of radiation exposure is revisited. All conventionally used and computationally complex lifetime or time-integrated risks are based on current population and health statistical data, with unknown future secular trends, that are projected far into the future. It is shown that application of conventionally used lifetime or time-integrated attributable risks (LAR, AR) should be limited to exposures under 1 Gy. More general quantities, such as excess lifetime risk (ELR) and, to a lesser extent, risk of exposure-induced death (REID), are free of dose constraints, but are even more computationally complex than LAR and AR and rely on the unknown total radiation effect on demographic and health statistical data. Appropriate assessment of time-integrated risk of a specific outcome following high-dose (more than 1 Gy) exposure requires consideration of competing risks for other radiation-attributed outcomes and the resulting ELR estimate has an essentially non-linear dose response. Limitations caused by basing conventionally applied time-integrated risks on current population and health statistical data are that they are: (a) not well suited for risk estimates for atypical groups of exposed persons not readily represented by the general population; and (b) not optimal for risk projections decades into the future due to large uncertainties in developments of the future secular trends in the population-specific disease rates. Alternative disease-specific quantities, baseline and attributable survival fractions, based on reduction of survival chances are considered here and are shown to be very useful in circumventing most aspects of these limitations. Another main quantity, named as radiation-attributed decrease of survival (RADS), is recommended here to represent cumulative radiation risk conditional on survival until a certain age. RADS, historically known in statistical literature as "cumulative risk", is only based on the radiation-attributed hazard and is insensitive to competing risks. Therefore, RADS is eminently suitable for risk projections in emergency situations and for estimating radiation risks for persons exposed after therapeutic or interventional medical applications of radiation or in other highly atypical groups of exposed persons, such as astronauts.


Assuntos
Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle , Proteção Radiológica , Medição de Risco/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Medicina , Pessoa de Meia-Idade , Modelos Estatísticos , Prognóstico , Lesões por Radiação/diagnóstico , Lesões por Radiação/epidemiologia , Radiobiologia , Análise de Sobrevida , Adulto Jovem
8.
Radiat Prot Dosimetry ; 183(1-2): 259-263, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30520982

RESUMO

Breast-cancer radiotherapy reduces the recurrence rates and improves patient survival. However, it also increases the incidence of second cancers and of heart disease. These radiation-induced long-term health risks become increasingly important with improved cure rates and prolonged patient survival. Radiation doses to nearby as well as distant organs strongly vary between different irradiation techniques and among individual patients. To provide personalized lifetime risk estimates, the German national project PASSOS combines individual anatomy, dosimetric estimates, organ-specific low- and high-dose risk models and personal risk factors such as smoking. A dedicated software tool is under development to assist clinical decision-making processes.


Assuntos
Neoplasias da Mama/radioterapia , Neoplasias Induzidas por Radiação/etiologia , Segunda Neoplasia Primária/etiologia , Lesões por Radiação/etiologia , Relação Dose-Resposta à Radiação , Feminino , Alemanha , Coração/efeitos da radiação , Humanos , Especificidade de Órgãos , Órgãos em Risco , Radiometria , Dosagem Radioterapêutica , Medição de Risco , Fatores de Risco , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA