Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338331

RESUMO

Excess cortisol release is associated with numerous health concerns, including psychiatric issues (i.e., anxiety, insomnia, and depression) and nonpsychiatric issues (i.e., osteoporosis). The aim of this study was to assess the in vitro inhibition of cortisol release, bioaccessibility, and bioavailability exerted by a chemically characterized Scutellaria lateriflora L. extract (SLE). The treatment of H295R cells with SLE at increasing, noncytotoxic, concentrations (5-30 ng/mL) showed significant inhibition of cortisol release ranging from 58 to 91%. The in vitro simulated gastric, duodenal, and gastroduodenal digestions, induced statistically significant reductions (p < 0.0001) in the bioactive polyphenolic compounds that most represented SLE. Bioavailability studies on duodenal digested SLE, using Caco-2 cells grown on transwell inserts and a parallel artificial membrane permeability assay, indicated oroxylin A glucuronide and oroxylin A were the only bioactive compounds able to cross the Caco-2 cell membrane and the artificial lipid membrane, respectively. The results suggest possible applications of SLE as a food supplement ingredient against cortisol-mediated stress response and the use of gastroresistant oral dosage forms to partially prevent the degradation of SLE bioactive compounds. In vivo studies and clinical trials remain necessary to draw a conclusion on the efficacy and tolerability of this plant extract.


Assuntos
Scutellaria , Humanos , Scutellaria/química , Hidrocortisona , Disponibilidade Biológica , Células CACO-2 , Extratos Vegetais/farmacologia
2.
Mar Drugs ; 21(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623720

RESUMO

Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper discusses the historical and existential records of cyanobacteria, and their role in understanding the evolution of marine cyanobacteria through the ages. Recent advancements have focused on isolating and screening bioactive compounds and their respective medicinal properties, and we also discuss chemical property space and clinical trials, where compounds with potential pharmacological effects, such as cytotoxicity, anticancer, and antiparasitic properties, are highlighted. The data have shown that about 43% of the compounds investigated have cytotoxic effects, and around 8% have anti-trypanosome activity. We discussed the role of different marine cyanobacteria groups in fixing nitrogen percentages on Earth and their outcomes in fish productivity by entering food webs and enhancing productivity in different agricultural and ecological fields. The role of marine cyanobacteria in the carbon cycle and their outcomes in improving the efficiency of photosynthetic CO2 fixation in the chloroplasts of crop plants, thus enhancing the crop plant's yield, was highlighted. Ultimately, climate changes have a significant impact on marine cyanobacteria where the temperature rises, and CO2 improves the cyanobacterial nitrogen fixation.


Assuntos
Mudança Climática , Cianobactérias , Animais , Dióxido de Carbono , Fixação de Nitrogênio , Agricultura
3.
Biomed Pharmacother ; 165: 115144, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437376

RESUMO

The current study aims to quantify HPLC-DAD polyphenolics in the crude extracts of Desmodium elegans, evaluating its cholinesterase inhibitory, antioxidant, molecular docking and protective effects against scopolamine-induced amnesia in mice. A total of 16 compounds were identified which include gallic acid (239 mg g-1), p-hydroxybenzoic acid (11.2 mg g-1), coumaric acid (10.0 mg g-1), chlorogenic acid (10.88 mg g-1), caffeic acid (13.9 mg g-1), p-coumaroylhexose (41.2 mg g-1), 3-O-caffeoylquinic acid (22.4 mg g-1), 4-O-caffeoylquinic acid (6.16 mg g-1), (+)-catechin (71.34 mg g-1), (-)-catechin (211.79 mg g-1), quercetin-3-O-glucuronide (17.9 mg g-1), kaempferol-7-O-glucuronide (13.2 mg g-1), kaempferol-7-O-rutinoside (53.67 mg g-1), quercetin-3-rutinoside (12.4 mg g-1), isorhamnetin-7-O-glucuronide (17.6 mg g-1) and isorhamnetin-3-O-rutinoside (15.0 mg g-1). In a DPPH free radical scavenging assay, the chloroform fraction showed the highest antioxidant activity, with an IC50 value of 31.43 µg mL-1. In an AChE inhibitory assay, the methanolic and chloroform fractions showed high inhibitory activities causing 89% and 86.5% inhibitions with IC50 values of 62.34 and 47.32 µg mL-1 respectively. In a BChE inhibition assay, the chloroform fraction exhibited 84.36% inhibition with IC50 values of 45.98 µg mL-1. Furthermore, molecular docking studies revealed that quercetin-3-rutinoside and quercetin-3-O-glucuronide fit perfectly in the active sites of AChE and BChE respectively. Overall, the polyphenols identified exhibited good efficacy, which is likely as a result of the compounds' electron-donating hydroxyl groups (-OH) and electron cloud density. The administration of methanolic extract improved cognitive performance and demonstrated anxiolytic behavior among tested animals.


Assuntos
Doença de Alzheimer , Escopolamina , Camundongos , Animais , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Polifenóis/efeitos adversos , Clorofórmio/efeitos adversos , Quercetina/efeitos adversos , Simulação de Acoplamento Molecular , Glucuronídeos , Extratos Vegetais/efeitos adversos , Inibidores da Colinesterase/efeitos adversos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Antioxidantes/efeitos adversos , Metanol/química , Modelos Animais , Rutina
4.
Nutrients ; 15(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447210

RESUMO

Prolonged fatigue is associated with non-pathological causes and lacks an established therapeutic approach. The current study is aimed at assessing the efficacy of a new food supplement (Improve™) based on a chemically characterized pomegranate extract and hydro-soluble vitamins (B complex and C). UHPLC-HRMS analysis of pomegranate extract showed the presence of 59 compounds, with gallotannins and ellagitannins being the most abundant phytochemicals. For the clinical study, 58 subjects were randomized into two groups, 1 and 2 (n = 29, each), which received either the food supplement or placebo. The effects of the food supplement against fatigue were assessed via validated questionnaires, recorded at time intervals t0 (at baseline), t1 (after 28 days), t2 (56 days), and t3 (after follow-up) in combination with the analysis of biochemical markers at t0 and t2. Fatigue severity scale (FSS) questionnaire scores were significantly decreased at the t2 and t3 time intervals in subjects treated with the food supplements, while the effect of the food supplement on a 12-Item Short Form Survey (SF-12) was not considerable. Moreover, the food supplement did not significantly affect biochemical parameters associated with fatigue and stress conditions. This study shows that the food supplement tested reduces prolonged fatigue following two months of supplementation in healthy subjects with mild prolonged fatigue.


Assuntos
Punica granatum , Vitaminas , Humanos , Suplementos Nutricionais , Fadiga/tratamento farmacológico , Vitamina A/uso terapêutico , Vitamina K/uso terapêutico , Método Duplo-Cego
5.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446131

RESUMO

Astragalus membranaceus (Fisch.) Bunge root is used as herbal medicine for its immunomodulating activities in Chinese medicine. Recently, beneficial properties of A. membranaceus on allergic diseases have been proposed. Here we investigated the role of a commercial extract of A. membranaceus, standardized to 16% polysaccharides, in regulating the immune-inflammatory response in vitro and in vivo and its therapeutic application in asthma. A. membranaceus extract inhibited prostaglandin E2 and leukotriene C4 production in stimulated J774 and peritoneal macrophages, respectively. The extract also reduced interlukin-1ß, tumor necrosis factor-α, and nitrite production, affecting inducible nitric oxide synthase expression. In vivo experiments confirmed the anti-inflammatory properties of A. membranaceus, as evident by a reduction in zymosan-induced peritoneal cellular infiltration and pro-inflammatory mediator production. The efficacy of A. membranaceus extract in modulating the immune response was confirmed in a model of allergic airway inflammation. Extracts improve lung function by inhibiting airway hyperresponsiveness, airway remodeling, and fibrosis. Its anti-asthmatic effects were further sustained by inhibition of the sensitization process, as indicated by a reduction of ovalbumin-induced IgE levels and the mounting of a Th2 immune response. In conclusion, our data demonstrate the anti-inflammatory properties of the commercial extract of A. membranaceus and its beneficial effects on asthma feature development.


Assuntos
Antiasmáticos , Asma , Animais , Camundongos , Astragalus propinquus , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/prevenção & controle , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Imunoglobulina E , Ovalbumina/toxicidade , Camundongos Endogâmicos BALB C
6.
Foods ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174364

RESUMO

Periodontal diseases are oral inflammatory diseases ranging from gingivitis to chronic periodontitis. Porphyromonas gingivalis is one of the major pathogens responsible for severe and chronic periodontitis. Plant extracts with antimicrobial activity could be considered possible alternatives to chlorhexidine, an antiseptic substance used in oral hygiene thatcan cause bacteria resistance. Here, two commercial extracts obtained from Cistus × incanus L. and Scutellaria lateriflora L. were chemically characterized usingUltra-High-Performance Liquid Chromatography (UHPLC) coupled with a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. The extracts were studied for their bioaccessibility after simulated in vitro oral digestion, their antimicrobial activity against P. gingivalis, their protective effects against cellular invasion by P. gingivalis, and their antibiofilm activity. The extracts were found to contain very complex mixtures of polyphenols, which were quite stable after in vitro simulated oral digestion and demonstrated mild, dose-dependent inhibitory activity against P. gingivalis growth. This activity increased with the combination of the two extracts. Moreover, the combination of the extracts induced a reduction in P. gingivalis HaCaT invasiveness, and the reduction in biofilm came to around 80%. In conclusion, a combination of C. incanus and S. lateriflora showed promising effects useful in the treatment of gingivitis.

7.
Biomed Pharmacother ; 156: 113930, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411659

RESUMO

Depression is one of the most serious chronic psychiatric disorders affecting people worldwide. Subthreshold depression (SD) is a form of subclinical depression with increased risk of major depressive disorder (MDD). Patients diagnosed with SD may not be eligible for antidepressant drugs and, particularly in the case of MDD, these antidepressants may have adverse effects which outweigh their therapeutic effects, leading to discontinuation of therapy. Food supplements could provide an alternative strategy. The aim of this study is to demonstrate the efficacy of a food supplement based on a combination of S-adenosyl methionine (SAMe, 200 mg/day) and probiotics (Lactobacillus helveticus Rosell®-52, Bifidobacterium longum Rosell®-175, 3 ×109 CFU/day) in reducing depression symptoms in a monocentric, randomised, double-blind, placebo-controlled, cross-over clinical trial. 80 Subjects were recruited and offered the food supplement or placebo daily for three months, according to a cross-over clinical trial design, followed by a six-week follow-up period. The efficacy of the food supplement was measured by means of the "Hamilton Depression Rating Scale" (HAM-D) and "Patient Health Questionnaire-9" (PHQ-9), using a mixed analysis of variance model, with random intercept, for statistical analysis. The food supplement showed a significant decrease of PHQ-9 and HAM-D scores resulting in reduced SD and MDD symptoms as compared to placebo. In conclusion, the daily intake of the food supplement based on SAMe and probiotic strains for a period of three months is effective in improving the quality of life of SD subjects who are not eligible for antidepressant therapies, and patients suffering from mild-to-moderate depression who are not sensitive or cannot tolerate conventional drugs.


Assuntos
Transtorno Depressivo Maior , Probióticos , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Depressão/tratamento farmacológico , Qualidade de Vida , Suplementos Nutricionais , Probióticos/efeitos adversos , S-Adenosilmetionina/uso terapêutico , Método Duplo-Cego
8.
Cancers (Basel) ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36428774

RESUMO

Colorectal cancer (CRC) is the second most frequent cause of cancer-related mortality among all types of malignancies. Sedentary lifestyles, obesity, smoking, red and processed meat, low-fiber diets, inflammatory bowel disease, and gut dysbiosis are the most important risk factors associated with CRC pathogenesis. Alterations in gut microbiota are positively correlated with colorectal carcinogenesis, as these can dysregulate the immune response, alter the gut's metabolic profile, modify the molecular processes in colonocytes, and initiate mutagenesis. Changes in the daily diet, and the addition of plant-based nutraceuticals, have the ability to modulate the composition and functionality of the gut microbiota, maintaining gut homeostasis and regulating host immune and inflammatory responses. Spices are one of the fundamental components of the human diet that are used for their bioactive properties (i.e., antimicrobial, antioxidant, and anti-inflammatory effects) and these exert beneficial effects on health, improving digestion and showing anti-inflammatory, immunomodulatory, and glucose- and cholesterol-lowering activities, as well as possessing properties that affect cognition and mood. The anti-inflammatory and immunomodulatory properties of spices could be useful in the prevention of various types of cancers that affect the digestive system. This review is designed to summarize the reciprocal interactions between dietary spices and the gut microbiota, and highlight the impact of dietary spices and their bioactive compounds on colorectal carcinogenesis by targeting the gut microbiota.

9.
Nutrients ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807931

RESUMO

Depression is a common and serious health issue affecting around 280 million people around the world. Suicidal ideation more frequently occurs in people with moderate to severe depression. Psychotherapy and pharmacological drugs are the mainstay of available treatment options for depressive disorders. However, pharmacological options do not offer complete cure, especially in moderate to severe depression, and are often seen with a range of adverse events. S-adenosyl methionine (SAMe) supplementation has been widely studied, and an impressive collection of literature published over the last few decades suggests its antidepressant efficacy. Probiotics have gained significant attention due to their wide array of clinical uses, and multiple studies have explored the link between probiotic species and mood disorders. Gut dysbiosis is one of the risk factors in depression by inducing systemic inflammation accompanied by an imbalance in neurotransmitter production. Thus, concomitant administration of probiotics may be an effective treatment strategy in patients with depressed mood, particularly in resistant cases, as these can aid in dysbiosis, possibly resulting in the attenuation of systemic inflammatory processes and the improvement of the therapeutic efficacy of SAMe. The current review highlights the therapeutic roles of SAMe and probiotics in depression, their mechanistic targets, and their possible synergistic effects and may help in the development of food supplements consisting of a combination of SAMe and probiotics with new dosage forms that may improve their bioavailability.


Assuntos
Disbiose , Probióticos , Depressão/tratamento farmacológico , Suplementos Nutricionais , Disbiose/tratamento farmacológico , Humanos , Probióticos/uso terapêutico , S-Adenosilmetionina/uso terapêutico
10.
Biomed Pharmacother ; 148: 112759, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35248845

RESUMO

INTRODUCTION: A large body of evidence suggests that propolis exerts antioxidant, anti-inflammatory, and antimicrobial activities, mostly ascribed to its polyphenol content. Growing evidence suggests that propolis could modulate gut microbiota exerting a positive impact on several pathological conditions. The aim of this study was to determine the in vitro impact of a poplar-type propolis extract with a standardized polyphenol content, on the composition and functionality of gut microbiota obtained from fecal material of five different donors (healthy adults, and healthy, obese, celiac, and food allergic children). METHODS: The standardized polyphenol mixture was submitted to a simulated in vitro digestion-fermentation process, designed to mimic natural digestion in the human oral, gastric, and intestinal chambers. The antioxidant profile of propolis before and after the digestion-fermentation process was determined. 16 S rRNA amplicon next-generation sequencing (NGS) was used to test the effects on the gut microbiota of propolis extract. The profile of the short-chain fatty acids (SCFA) produced by the microbiota was also investigated through a chromatographic method coupled with UV detection. RESULTS: In vitro digestion and fermentation induced a decrease in the antioxidant profile of propolis (i.e., decrease of total polyphenol content, antiradical and reducing activities). Propolis fermentation exhibited a modulatory effect on gut microbiota composition and functionality of healthy and diseased subjects increasing the concentration of SCFA. CONCLUSIONS: Overall, these data suggest that propolis might contribute to gut health and could be a candidate for further studies in view of its use as a prebiotic ingredient.


Assuntos
Antioxidantes/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Polifenóis/farmacologia , Própole , Doença Celíaca/patologia , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Fermentação/fisiologia , Hipersensibilidade Alimentar/patologia , Obesidade/patologia
11.
Molecules ; 27(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335268

RESUMO

Food spoilage makes foods undesirable and unacceptable for human use. The preservation of food is essential for human survival, and different techniques were initially used to limit the growth of spoiling microbes, e.g., drying, heating, salting, or fermentation. Water activity, temperature, redox potential, preservatives, and competitive microorganisms are the most important approaches used in the preservation of food products. Preservative agents are generally classified into antimicrobial, antioxidant, and anti-browning agents. On the other hand, artificial preservatives (sorbate, sulfite, or nitrite) may cause serious health hazards such as hypersensitivity, asthma, neurological damage, hyperactivity, and cancer. Thus, consumers prefer natural food preservatives to synthetic ones, as they are considered safer. Polyphenols have potential uses as biopreservatives in the food industry, because their antimicrobial and antioxidant activities can increase the storage life of food products. The antioxidant capacity of polyphenols is mainly due to the inhibition of free radical formation. Moreover, the antimicrobial activity of plants and herbs is mainly attributed to the presence of phenolic compounds. Thus, incorporation of botanical extracts rich in polyphenols in perishable foods can be considered since no pure polyphenolic compounds are authorized as food preservatives. However, individual polyphenols can be screened in this regard. In conclusion, this review highlights the use of phenolic compounds or botanical extracts rich in polyphenols as preservative agents with special reference to meat and dairy products.


Assuntos
Conservantes de Alimentos , Polifenóis , Antioxidantes/farmacologia , Laticínios , Conservantes de Alimentos/farmacologia , Humanos , Carne , Polifenóis/farmacologia
12.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360782

RESUMO

Colorectal carcinogenesis is the second most common cause of mortality across all types of malignancies, followed by hepatic and stomach cancers. Chemotherapy and radiotherapy are key approaches to treating cancer patients, but these carry major concerns, such as a high risk of side effects, poor accessibility, and the non-selective nature of chemotherapeutics. A number of natural products have been identified as countering various forms of cancer with fewer side effects. The potential impact of vitamins and minerals on long-term health, cognition, healthy development, bone formation, and aging has been supported by experimental and epidemiological studies. Successful treatment may thus be highly influenced by the nutritional status of patients. An insufficient diet could lead to detrimental effects on immune status and tolerance to treatment, affecting the ability of chemotherapy to destroy cancerous cells. In recent decades, most cancer patients have been taking vitamins and minerals to improve standard therapy and/or to decrease the undesirable side effects of the treatment together with the underlying disease. On the other hand, taking dietary supplements during cancer therapy may affect the effectiveness of chemotherapy. Thus, micronutrients in complementary oncology must be selected appropriately and should be taken at the right time. Here, the potential impact of micronutrients on gastro-intestinal and hepatic cancers is explored and their molecular targets are laid down.


Assuntos
Neoplasias Colorretais , Suplementos Nutricionais , Neoplasias Hepáticas , Micronutrientes , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Micronutrientes/imunologia , Micronutrientes/uso terapêutico
13.
Antioxidants (Basel) ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915950

RESUMO

Mitochondrial dysfunction results in a series of defective cellular events, including decreased adenosine triphosphate (ATP) production, enhanced reactive oxygen species (ROS) output, and altered proteastasis and cellular quality control. An enhanced output of ROS may damage mitochondrial components, such as mitochondrial DNA and elements of the electron transport chain, resulting in the loss of proper electrochemical gradient across the mitochondrial inner membrane and an ensuing shutdown of mitochondrial energy production. Neurons have an increased demand for ATP and oxygen, and thus are more prone to damage induced by mitochondrial dysfunction. Mitochondrial dysfunction, damaged electron transport chains, altered membrane permeability and Ca2+ homeostasis, and impaired mitochondrial defense systems induced by oxidative stress, are pathological changes involved in neurodegenerative disorders. A growing body of evidence suggests that the use of antioxidants could stabilize mitochondria and thus may be suitable for preventing neuronal loss. Numerous natural products exhibit the potential to counter oxidative stress and mitochondrial dysfunction; however, science is still looking for a breakthrough in the treatment of neurodegenerative disorders. ß-caryophyllene is a bicyclic sesquiterpene, and an active principle of essential oils derived from a large number of spices and food plants. As a selective cannabinoid receptor 2 (CB2) agonist, several studies have reported it as possessing numerous pharmacological activities such as antibacterial (e.g., Helicobacter pylori), antioxidant, anti-inflammatory, analgesic (e.g., neuropathic pain), anti-neurodegenerative and anticancer properties. The present review mainly focuses on the potential of ß-caryophyllene in reducing oxidative stress and mitochondrial dysfunction, and its possible links with neuroprotection.

14.
Crit Rev Food Sci Nutr ; 61(10): 1616-1639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32478608

RESUMO

Irrespective of sex and age, cancer is the leading cause of mortality around the globe. Therapeutic incompliance, unwanted effects, and economic burdens imparted by cancer treatments, are primary health challenges. The heritable features in gene expression that are propagated through cell division and contribute to cellular identity without a change in DNA sequence are considered epigenetic characteristics and agents that could interfere with these features and are regarded as potential therapeutic targets. The genetic modification accounts for the recurrence and uncontrolled changes in the physiology of cancer cells. This review focuses on plant-derived flavonoids as a therapeutic tool for cancer, attributed to their ability for epigenetic regulation of cancer pathogenesis. The epigenetic mechanisms of various classes of flavonoids including flavonols, flavones, isoflavones, flavanones, flavan-3-ols, and anthocyanidins, such as cyanidin, delphinidin, and pelargonidin, are discussed. The outstanding results of preclinical studies encourage researchers to design several clinical trials on various flavonoids to ascertain their clinical strength in the treatment of different cancers. The results of such studies will define the clinical fate of these agents in future.


Assuntos
Flavonoides , Neoplasias , Dieta , Epigênese Genética , Flavonóis , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
15.
Semin Cancer Biol ; 69: 200-211, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31374244

RESUMO

The conventional therapies for cancer have a major concern of poor accessibility to tumor tissues. Furthermore, the requirement of higher doses and non-selective nature of therapeutic are associated with a range of adverse drug reactions (ADRs). However, flavonoids are documented to be effective against various types of cancer, but they are not evaluated for their safety profile and tumor site-specific action. Low solubility, rapid metabolism and poor absorption of dietary flavonoids in gastrointestinal tract hinder their pharmacological potential. Some studies have also suggested that flavonoids may act as pro-oxidant in some cases and may interact with other therapeutic agents, especially through biotransformation. Nanocarriers can alter pharmacokinetics and pharmacodynamic profile of incorporating drug. Moreover, nanocarriers are designed for targeted drug delivery, improving the bioavailability of poorly water-soluble drugs, delivery of macromolecules to site of action within the cell, combining therapeutic agents with imaging techniques which may visualize the site of drug delivery and co-delivery of two or more drugs. Combining two or more anti-cancer agents can reduce ADRs and nanotechnology played a pivotal role in this regard. In vitro and in vivo studies have shown the potential of flavonoids nano-formulations, especially quercetin, naringenin, apigenin, catechins and fisetin in the prevention and treatment of several types of cancer. Similarly, clinical trials have been conducted using flavonoids alone or in combination, however, the nano-formulations effect still needs to be elucidated. This review focuses on the impact of flavonoids nano-formulations on the improvement of their bioavailability, therapeutic and safety profile and will open new insights in the field of drug discovery for cancer therapeutics.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Flavonoides/administração & dosagem , Nanomedicina , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Humanos , Nanopartículas/química , Neoplasias/patologia
16.
Food Chem Toxicol ; 146: 111817, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33069760

RESUMO

Neurodegenerative disorders are characterized by progressive loss of neurons. To date, no efficacious therapies exist for these disorders, and current therapies provide only symptomatic relief. The neuroprotective effects of natural compounds have been reported in several neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) amyotrophic lateral sclerosis (ALS), cerebral ischemia and brain tumors. Flavonoids are the most widely studied natural products for the prevention and treatment of neurodegenerative disorders. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) represents a complex gene regulated cytoprotective pathway. Several natural compounds have been identified as Nrf2 regulators in various chronic disorders, including carcinogenic, liver ailments, inflammatory conditions, neurodegeneration, diabetes and cardiotoxicities. The current review focuses on Nrf2 targeting by flavonoids in the prevention and treatment of neurodegenerative disorders, addressing the most contemporary information available on this timely subject.


Assuntos
Flavonoides/farmacologia , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Fármacos Neuroprotetores/farmacologia
17.
Food Chem Toxicol ; 144: 111574, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679287

RESUMO

Metabolic syndrome is a cluster of pathologies and conditions such as obesity, hyperglycemia, hyperlipidemia and hypertension representing a serious health concern in many countries due to its high rate of mortality and morbidity. Insulin resistance is known to play a central role in the development of metabolic syndrome and several risk factors, including visceral obesity, oxidative stress and chronic inflammation, could trigger insulin resistance. Different strategies are currently in practice to manage metabolic syndrome. Along with dietary components, botanicals contain secondary metabolites, which may play a pivotal role in the maintenance of health by combating chronic disorders. Genus Prunus is classified under family Rosaceae and consists of 400-430 species. This genus contains some important species of fruits and ornamental plants. Prunus species contain important micronutrients such as vitamins and minerals and their consumption could maintain health by nourishing the body with essential and non-essential compounds. Besides nutritional components, they also contain bioactive compounds such as polyphenols, which make them potential alternative therapeutic agents for a number of chronic disorders including dysregulated metabolic conditions. The present review is designed to highlight the evidence-based effects of Prunus species against metabolic syndrome risk factors.


Assuntos
Alimento Funcional , Síndrome Metabólica/prevenção & controle , Prunus/química , Humanos , Resistência à Insulina , Síndrome Metabólica/fisiopatologia , Prunus/classificação , Fatores de Risco , Especificidade da Espécie
18.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668581

RESUMO

Gastrointestinal (GI) diseases, which include gastrointestinal reflux disease, gastric ulceration, inflammatory bowel disease, and other functional GI disorders, have become prevalent in a large part of the world population. Metabolic syndrome (MS) is cluster of disorders including obesity, hyperglycemia, hyperlipidemia, and hypertension, and is associated with high rate of morbidity and mortality. Gut dysbiosis is one of the contributing factors to the pathogenesis of both GI disorder and MS, and restoration of normal flora can provide a potential protective approach in both these conditions. Bioactive dietary components are known to play a significant role in the maintenance of health and wellness, as they have the potential to modify risk factors for a large number of serious disorders. Different classes of functional dietary components, such as dietary fibers, probiotics, prebiotics, polyunsaturated fatty acids, polyphenols, and spices, possess positive impacts on human health and can be useful as alternative treatments for GI disorders and metabolic dysregulation, as they can modify the risk factors associated with these pathologies. Their regular intake in sufficient amounts also aids in the restoration of normal intestinal flora, resulting in positive regulation of insulin signaling, metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. This review is designed to focus on the health benefits of bioactive dietary components, with the aim of preventing the development or halting the progression of GI disorders and MS through an improvement of the most important risk factors including gut dysbiosis.


Assuntos
Disbiose/complicações , Gastroenteropatias/etiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/etiologia , Síndrome Metabólica/etiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Doença Crônica , Dieta , Gorduras na Dieta/uso terapêutico , Fibras na Dieta/uso terapêutico , Suplementos Nutricionais , Progressão da Doença , Disbiose/dietoterapia , Disbiose/metabolismo , Disbiose/microbiologia , Ácidos Graxos/uso terapêutico , Gastroenteropatias/epidemiologia , Gastroenteropatias/prevenção & controle , Humanos , Inflamação/prevenção & controle , Resistência à Insulina , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/prevenção & controle , Modelos Biológicos , Obesidade/complicações , Obesidade/microbiologia , Estresse Oxidativo , Polifenóis/uso terapêutico , Prebióticos , Probióticos/uso terapêutico , Fatores de Risco , Especiarias
19.
J Ethnopharmacol ; 252: 112558, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31926985

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Drug induced liver damage remains a prevalent concern in healthcare and may reduce the effectiveness of therapy by compromising therapeutic regimens. Many Commiphora species are known for their medicinal properties, and some of them are used traditionally for hepatoprotective effect. In the course of our drugs discovery from natural sources, phytosterols (lophenol (Lop) and lathosterol (Lat)), isolated from Commiphora kua were studied to evaluate their hepatoprotective effects in acetaminophen (APAP) induced hepatotoxicity in mice. AIMS AND OBJECTIVE: To evaluate the hepatoprotective effects of phytosterols isolated from C. kua using in vivo experimental model. MATERIALS AND METHODS: Mice of either sex were divided into 7 groups: Vehicle, silymarin (SLY), acetaminophen (APAP), Lop 25, Lop 50, Lat 25, Lat 50 (n = 5). Vehicle group received only vehicle (0.1% DMSO solution) for 7 days, APAP group received single dose of acetaminophen on day 7 and SLY group received silymarin for 7 days. Lop 25 and Lop 50 received low and high doses of Lop (25 µg/kg BW and 50 µg/kg BW), respectively, for 7 days, while Lat 25 and Lat 50 received low and high doses of Lat (25 µg/kg BW and 50 µg/kg BW) for 7 days. On day 7, all animals except Vehicle group kept fasted for 18 h and received APAP i. p. 400 mg/kg BW. After 20 h of APAP administration, the animals anesthetized with light chloroform and scarified by cervical decapitation. The blood serum and liver tissue samples were collected for biochemical and histopathological analysis. Liver function tests (LFTs) including lactate deydrogenase (LDH), alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST) and direct bilirubin) were used as biochemical parameters. While catalase (CAT), superoxide dismutase (SOD) and reduced glutathione (GSH) were taken as anti-oxidant enzymes. RESULTS: Significant increase in levels of ALT, AST, ALP, LDH and direct bilirubin, and significant decrease in concentration of anti-oxidant enzymes (SOD, CAT and GSH) was observed in APAP-treated group. Similarly, histological slides showed obvious signs of damage to liver cells, reflecting acetaminophen induced hepatotoxicity. Treatment of test animals with phytosterols resulted in significant recovery of LFTs profile and concentration of anti-oxidant enzymes. Similarly, significant improvement of liver tissues was noted in histological analysis. CONCLUSIONS: Both phytosterols possessed hepatoprotective potential and should be further evaluated for acute toxicity studies and pharmacokinetics/pharmacodynamics profile.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Colesterol/uso terapêutico , Commiphora , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Acetaminofen , Animais , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestenos/farmacologia , Colestenos/uso terapêutico , Colesterol/farmacologia , Feminino , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Resinas Vegetais/química , Superóxido Dismutase/metabolismo
20.
Biotechnol Adv ; 38: 107385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31004736

RESUMO

The anticancer effects of polyphenols are ascribed to several signaling pathways including the tumor suppressor gene tumor protein 53 (p53). Expression of endogenous p53 is silent in various types of cancers. A number of polyphenols from a wide variety of dietary sources could upregulate p53 expression in several cancer cell lines through distinct mechanisms of action. The aim of this review is to focus the significance of p53 signaling pathways and to provide molecular intuitions of dietary polyphenols in chemoprevention by monitoring p53 expression that have a prominent role in tumor suppression.


Assuntos
Neoplasias , Linhagem Celular Tumoral , Humanos , Polifenóis , Transdução de Sinais , Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA