Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979192

RESUMO

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer Disease (AD), and recent proteomic studies highlight a disruption of glial carbohydrate metabolism with disease progression. Here, we report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN) in the first step of the kynurenine pathway, rescues hippocampal memory function and plasticity in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid-beta 42 and tau oligomers, two major pathological effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores glycolysis and lactate production. In amyloid-producing APP Swe -PS1 ΔE9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition restores spatial memory and improves hippocampal glucose metabolism by metabolomic and MALDI-MS analyses. IDO1 blockade also rescues hippocampal long-term potentiation (LTP) in a monocarboxylate transporter (MCT)-dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass-labeling of human astrocytes demonstrates that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In co-cultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism. Thus, IDO1 activity disrupts astrocytic metabolic support of neurons across both amyloid and tau pathologies and in a model of AD iPSC-derived neurons. These findings also suggest that IDO1 inhibitors developed for adjunctive therapy in cancer could be repurposed for treatment of amyloid- and tau-mediated neurodegenerative diseases.

2.
Nat Commun ; 11(1): 4803, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968068

RESUMO

Meningiomas are the most common primary intracranial tumors, but the molecular drivers of meningioma tumorigenesis are poorly understood. We hypothesized that investigating intratumor heterogeneity in meningiomas would elucidate biologic drivers and reveal new targets for molecular therapy. To test this hypothesis, here we perform multiplatform molecular profiling of 86 spatially-distinct samples from 13 human meningiomas. Our data reveal that regional alterations in chromosome structure underlie clonal transcriptomic, epigenomic, and histopathologic signatures in meningioma. Stereotactic co-registration of sample coordinates to preoperative magnetic resonance images further suggest that high apparent diffusion coefficient (ADC) distinguishes meningioma regions with proliferating cells enriched for developmental gene expression programs. To understand the function of these genes in meningioma, we develop a human cerebral organoid model of meningioma and validate the high ADC marker genes CDH2 and PTPRZ1 as potential targets for meningioma therapy using live imaging, single cell RNA sequencing, CRISPR interference, and pharmacology.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Imageamento por Ressonância Magnética/métodos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Idoso , Antígenos CD/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Caderinas/genética , Imagem de Difusão por Ressonância Magnética/métodos , Epigenômica , Feminino , Marcadores Genéticos , Genômica , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Transcriptoma
3.
Genome Biol ; 21(1): 83, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234056

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) exhibit highly cell type-specific expression and function, making this class of transcript attractive for targeted cancer therapy. However, the vast majority of lncRNAs have not been tested as potential therapeutic targets, particularly in the context of currently used cancer treatments. Malignant glioma is rapidly fatal, and ionizing radiation is part of the current standard-of-care used to slow tumor growth in both adult and pediatric patients. RESULTS: We use CRISPR interference (CRISPRi) to screen 5689 lncRNA loci in human glioblastoma (GBM) cells, identifying 467 hits that modify cell growth in the presence of clinically relevant doses of fractionated radiation. Thirty-three of these lncRNA hits sensitize cells to radiation, and based on their expression in adult and pediatric gliomas, nine of these hits are prioritized as lncRNA Glioma Radiation Sensitizers (lncGRS). Knockdown of lncGRS-1, a primate-conserved, nuclear-enriched lncRNA, inhibits the growth and proliferation of primary adult and pediatric glioma cells, but not the viability of normal brain cells. Using human brain organoids comprised of mature neural cell types as a three-dimensional tissue substrate to model the invasive growth of glioma, we find that antisense oligonucleotides targeting lncGRS-1 selectively decrease tumor growth and sensitize glioma cells to radiation therapy. CONCLUSIONS: These studies identify lncGRS-1 as a glioma-specific therapeutic target and establish a generalizable approach to rapidly identify novel therapeutic targets in the vast non-coding genome to enhance radiation therapy.


Assuntos
Neoplasias Encefálicas/terapia , Sistemas CRISPR-Cas , Glioblastoma/terapia , RNA Longo não Codificante/antagonistas & inibidores , Adulto , Astrócitos , Encéfalo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Oligonucleotídeos Antissenso , Organoides , Tolerância a Radiação
4.
Am J Med Genet A ; 176(12): 2924-2929, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30302932

RESUMO

This report summarizes and highlights the fifth International RASopathies Symposium: When Development and Cancer Intersect, held in Orlando, Florida in July 2017. The RASopathies comprise a recognizable pattern of malformation syndromes that are caused by germ line mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. Because of their common underlying pathogenetic etiology, there is significant overlap in their phenotypic features, which includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, gastrointestinal and ocular abnormalities, neurological and neurocognitive issues, and a predisposition to cancer. The RAS pathway is a well-known oncogenic pathway that is commonly found to be activated in somatic malignancies. As in somatic cancers, the RASopathies can be caused by various pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. As such, the RASopathies represent an excellent model of study to explore the intersection of the effects of dysregulation and its consequence in both development and oncogenesis.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas ras/genética , Animais , Regulação da Expressão Gênica , Estudos de Associação Genética/métodos , Desenvolvimento Humano , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Organogênese/genética , Transdução de Sinais , Síndrome , Proteínas ras/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(50): 14408-14413, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911847

RESUMO

The rapid spread of Zika virus (ZIKV) and its association with abnormal brain development constitute a global health emergency. Congenital ZIKV infection produces a range of mild to severe pathologies, including microcephaly. To understand the pathophysiology of ZIKV infection, we used models of the developing brain that faithfully recapitulate the tissue architecture in early to midgestation. We identify the brain cell populations that are most susceptible to ZIKV infection in primary human tissue, provide evidence for a mechanism of viral entry, and show that a commonly used antibiotic protects cultured brain cells by reducing viral proliferation. In the brain, ZIKV preferentially infected neural stem cells, astrocytes, oligodendrocyte precursor cells, and microglia, whereas neurons were less susceptible to infection. These findings suggest mechanisms for microcephaly and other pathologic features of infants with congenital ZIKV infection that are not explained by neural stem cell infection alone, such as calcifications in the cortical plate. Furthermore, we find that blocking the glia-enriched putative viral entry receptor AXL reduced ZIKV infection of astrocytes in vitro, and genetic knockdown of AXL in a glial cell line nearly abolished infection. Finally, we evaluate 2,177 compounds, focusing on drugs safe in pregnancy. We show that the macrolide antibiotic azithromycin reduced viral proliferation and virus-induced cytopathic effects in glial cell lines and human astrocytes. Our characterization of infection in the developing human brain clarifies the pathogenesis of congenital ZIKV infection and provides the basis for investigating possible therapeutic strategies to safely alleviate or prevent the most severe consequences of the epidemic.


Assuntos
Azitromicina/farmacologia , Encéfalo/embriologia , Encéfalo/virologia , Tropismo Viral/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Encéfalo/patologia , Linhagem Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Feminino , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Microcefalia/tratamento farmacológico , Microcefalia/embriologia , Microcefalia/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neuroglia/virologia , Gravidez , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/fisiologia , Tropismo Viral/fisiologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zika virus/patogenicidade , Infecção por Zika virus/embriologia , Infecção por Zika virus/patologia , Receptor Tirosina Quinase Axl
6.
Stem Cell Reports ; 7(3): 355-369, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27569062

RESUMO

Germline mutations in BRAF cause cardio-facio-cutaneous syndrome (CFCS), whereby 40% of patients develop hypertrophic cardiomyopathy (HCM). As the role of the RAS/MAPK pathway in HCM pathogenesis is unclear, we generated a human induced pluripotent stem cell (hiPSC) model for CFCS from three patients with activating BRAF mutations. By cell sorting for SIRPα and CD90, we generated a method to examine hiPSC-derived cell type-specific phenotypes and cellular interactions underpinning HCM. BRAF-mutant SIRPα(+)/CD90(-) cardiomyocytes displayed cellular hypertrophy, pro-hypertrophic gene expression, and intrinsic calcium-handling defects. BRAF-mutant SIRPα(-)/CD90(+) cells, which were fibroblast-like, exhibited a pro-fibrotic phenotype and partially modulated cardiomyocyte hypertrophy through transforming growth factor ß (TGFß) paracrine signaling. Inhibition of TGFß or RAS/MAPK signaling rescued the hypertrophic phenotype. Thus, cell autonomous and non-autonomous defects underlie HCM due to BRAF mutations. TGFß inhibition may be a useful therapeutic option for patients with HCM due to RASopathies or other etiologies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Biomarcadores , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Separação Celular , Reprogramação Celular , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Comunicação Parácrina , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas ras/metabolismo
7.
Sci Transl Med ; 7(286): 286ra66, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25947161

RESUMO

Astrocytes produce an assortment of signals that promote neuronal maturation according to a precise developmental timeline. Is this orchestrated timing and signaling altered in human neurodevelopmental disorders? To address this question, the astroglial lineage was investigated in two model systems of a developmental disorder with intellectual disability caused by mutant Harvey rat sarcoma viral oncogene homolog (HRAS) termed Costello syndrome: mutant HRAS human induced pluripotent stem cells (iPSCs) and transgenic mice. Human iPSCs derived from patients with Costello syndrome differentiated to astroglia more rapidly in vitro than those derived from wild-type cell lines with normal HRAS, exhibited hyperplasia, and also generated an abundance of extracellular matrix remodeling factors and proteoglycans. Acute treatment with a farnesyl transferase inhibitor and knockdown of the transcription factor SNAI2 reduced expression of several proteoglycans in Costello syndrome iPSC-derived astrocytes. Similarly, mice in which mutant HRAS was expressed selectively in astrocytes exhibited experience-independent increased accumulation of perineuronal net proteoglycans in cortex, as well as increased parvalbumin expression in interneurons, when compared to wild-type mice. Our data indicate that astrocytes expressing mutant HRAS dysregulate cortical maturation during development as shown by abnormal extracellular matrix remodeling and implicate excessive astrocyte-to-neuron signaling as a possible drug target for treating mental impairment and enhancing neuroplasticity.


Assuntos
Astrócitos/citologia , Síndrome de Costello/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Transdução de Sinais , Animais , Astrócitos/metabolismo , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Genes ras , Genótipo , Hipocampo/metabolismo , Humanos , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Mutação , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteoglicanas/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo
8.
J Cell Biol ; 183(5): 893-908, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047464

RESUMO

Localization of presynaptic components to synaptic sites is critical for hippocampal synapse formation. Cell adhesion-regulated signaling is important for synaptic development and function, but little is known about differentiation of the presynaptic compartment. In this study, we describe a pathway that promotes presynaptic development involving p120catenin (p120ctn), the cytoplasmic tyrosine kinase Fer, the protein phosphatase SHP-2, and beta-catenin. Presynaptic Fer depletion prevents localization of active zone constituents and synaptic vesicles and inhibits excitatory synapse formation and synaptic transmission. Depletion of p120ctn or SHP-2 similarly disrupts synaptic vesicle localization with active SHP-2, restoring synapse formation in the absence of Fer. Fer or SHP-2 depletion results in elevated tyrosine phosphorylation of beta-catenin. beta-Catenin overexpression restores normal synaptic vesicle localization in the absence of Fer or SHP-2. Our results indicate that a presynaptic signaling pathway through p120ctn, Fer, SHP-2, and beta-catenin promotes excitatory synapse development and function.


Assuntos
Moléculas de Adesão Celular/metabolismo , Hipocampo/enzimologia , Neurônios/enzimologia , Fosfoproteínas/metabolismo , Terminações Pré-Sinápticas/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transmissão Sináptica , beta Catenina/metabolismo , Animais , Axônios/enzimologia , Cateninas , Moléculas de Adesão Celular/genética , Células Cultivadas , Citoplasma/enzimologia , Potenciais Pós-Sinápticos Excitadores , Hipocampo/embriologia , Fosfoproteínas/genética , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Tirosina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transfecção , beta Catenina/genética , Proteína rhoA de Ligação ao GTP/metabolismo , delta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA