Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Rep ; 11(1): 12060, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103547

RESUMO

Dual-energy CT provides enhanced diagnostic power with similar or even reduced radiation dose as compared to single-energy CT. Its principle is based on the distinct physical properties of low and high energetic photons, which, however, may also affect the biological effectiveness and hence the extent of CT-induced cellular damage. Therefore, a comparative analysis of biological effectiveness of dual- and single-energy CT scans with focus on early gene regulation and frequency of radiation-induced DNA double strand breaks (DSBs) was performed. Blood samples from three healthy individuals were irradiated ex vivo with single-energy (80 kV and 150 kV) and dual-energy tube voltages (80 kV/Sn150kV) employing a modern dual source CT scanner resulting in Volume Computed Tomography Dose Index (CTDIvol) of 15.79-18.26 mGy and dose length product (DLP) of 606.7-613.8 mGy*cm. Non-irradiated samples served as a control. Differential gene expression in peripheral blood mononuclear cells was analyzed 6 h after irradiation using whole transcriptome sequencing. DSB frequency was studied by 53BP1 + γH2AX co-immunostaining and microscopic evaluation of their focal accumulation at DSBs. Neither the analysis of gene expression nor DSB frequency provided any evidence for significantly increased biological effectiveness of dual-energy CT in comparison to samples irradiated with particular single-energy CT spectra. Relative to control, irradiated samples were characterized by a significantly higher rate of DSBs (p < 0.001) and the shared upregulation of five genes, AEN, BAX, DDB2, FDXR and EDA2R, which have already been suggested as radiation-induced biomarkers in previous studies. Despite steadily decreasing doses, CT diagnostics remain a genotoxic stressor with impact on gene regulation and DNA integrity. However, no evidence was found that varying X-ray spectra of CT impact the extent of cellular damage.


Assuntos
Dano ao DNA , Perfilação da Expressão Gênica , Tomografia Computadorizada por Raios X/métodos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Adulto , Análise por Conglomerados , Quebras de DNA de Cadeia Dupla , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica , Genômica , Histonas/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Masculino , Pessoa de Meia-Idade , Fótons , Radiometria
2.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498964

RESUMO

Sulfur mustard (SM) is a chemical warfare agent that can damage DNA via alkylation and oxidative stress. Because of its genotoxicity, SM is cancerogenic and the progenitor of many chemotherapeutics. Previously, we developed an SM-resistant cell line via chronic exposure of the popular keratinocyte cell line HaCaT to increasing doses of SM over a period of 40 months. In this study, we compared the genomic landscape of the SM-resistant cell line HaCaT/SM to its sensitive parental line HaCaT in order to gain insights into genetic changes associated with continuous alkylation and oxidative stress. We established chromosome numbers by cytogenetics, analyzed DNA copy number changes by means of array Comparative Genomic Hybridization (array CGH), employed the genome-wide chromosome conformation capture technique Hi-C to detect chromosomal translocations, and derived mutational signatures by whole-genome sequencing. We observed that chronic SM exposure eliminated the initially prevailing hypotetraploid cell population in favor of a hyperdiploid one, which contrasts with previous observations that link polyploidization to increased tolerance and adaptability toward genotoxic stress. Furthermore, we observed an accumulation of chromosomal translocations, frequently flanked by DNA copy number changes, which indicates a high rate of DNA double-strand breaks and their misrepair. HaCaT/SM-specific single-nucleotide variants showed enrichment of C > A and T > A transversions and a lower rate of deaminated cytosines in the CpG dinucleotide context. Given the frequent use of HaCaT in toxicology, this study provides a valuable data source with respect to the original genotype of HaCaT and the mutational signatures associated with chronic alkylation and oxidative stress.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Queratinócitos/efeitos dos fármacos , Gás de Mostarda/toxicidade , Mutação , Radiação Ionizante , Alquilantes/farmacologia , Alquilantes/toxicidade , Linhagem Celular , Aberrações Cromossômicas/efeitos da radiação , Hibridização Genômica Comparativa , DNA/efeitos dos fármacos , DNA/metabolismo , DNA/efeitos da radiação , Adutos de DNA , Quebras de DNA de Cadeia Dupla , Humanos , Gás de Mostarda/farmacologia , Estresse Oxidativo
3.
Epigenetics ; 14(1): 81-93, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30691379

RESUMO

DNA hydroxymethylation has gained attention as an intermediate in the process of DNA demethylation. More recently, 5-hydroxymethylcytosine has been recognized as an independent epigenetic mark that can persist over time and that exerts influence on gene regulation and other biological processes. Deregulation of this DNA modification has been linked to tumorigenesis and a variety of other diseases. The impact of irradiation on DNA hydroxymethylation is poorly understood. In this study we exposed lung fibroblasts (IMR90) to 0.5 Gy and 2 Gy of X-rays, respectively. We characterized radiation induced changes of DNA hydroxymethylation 1 h, 6 h, 24 h and 120 h after exposure employing immunoprecipitation and subsequent deep sequencing of the genomic fraction enriched for hydroxymethylated DNA. Transcriptomic response to irradiation was analyzed for time points 6 h and 24 h post exposure by means of RNA sequencing. Irradiated and sham-irradiated samples shared the same overall distribution of 5-hydroxymethylcytosines with respect to genomic features such as promoters and exons. The frequency of 5-hydroxymethylcytosine peaks differentially detected in irradiated samples increased in genic regions over time, while the opposing trend was observed for intergenic regions. Onset and extent of this effect was dose dependent. Moreover, we demonstrated a biased distribution of 5-hmC alterations at CpG islands and sites occupied by the DNA binding protein CTCF. In summary, our study provides new insights into the epigenetic response to irradiation. Our data highlight genomic features more prone to irradiation induced changes of DNA hydroxymethylation, which might impact early and late onset effects of irradiation.


Assuntos
Metilação de DNA/efeitos da radiação , Genoma Humano/efeitos da radiação , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análise , Células Cultivadas , Ilhas de CpG , DNA Intergênico/química , DNA Intergênico/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Raios X
4.
Front Oncol ; 8: 183, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900125

RESUMO

In classical models of tumorigenesis, the accumulation of tumor promoting chromosomal aberrations is described as a gradual process. Next-generation sequencing-based methods have recently revealed complex patterns of chromosomal aberrations, which are beyond explanation by these classical models of karyotypic evolution of tumor genomes. Thus, the term chromothripsis has been introduced to describe a phenomenon, where temporarily and spatially confined genomic instability results in dramatic chromosomal rearrangements limited to segments of one or a few chromosomes. Simultaneously arising and misrepaired DNA double-strand breaks are also the cause of another phenomenon called chromoplexy, which is characterized by the presence of chained translocations and interlinking deletion bridges involving several chromosomes. In this study, we demonstrate the genome-wide identification of chromosomal translocations based on the analysis of translocation-associated changes in spatial proximities of chromosome territories on the example of the cutaneous T-cell lymphoma cell line Se-Ax. We have used alterations of intra- and interchromosomal interaction probabilities as detected by genome-wide chromosome conformation capture (Hi-C) to infer the presence of translocations and to fine-map their breakpoints. The outcome of this analysis was subsequently compared to datasets on DNA copy number alterations and gene expression. The presence of chained translocations within the Se-Ax genome, partly connected by intervening deletion bridges, indicates a role of chromoplexy in the etiology of this cutaneous T-cell lymphoma. Notably, translocation breakpoints were significantly overrepresented in genes, which highlight gene-associated biological processes like transcription or other gene characteristics as a possible cause of the observed complex rearrangements. Given the relevance of chromosomal aberrations for basic and translational research, genome-wide high-resolution analysis of structural chromosomal aberrations will gain increasing importance.

5.
Health Phys ; 115(1): 21-28, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787427

RESUMO

Cardiac arrhythmia presumably induced through cardiac fibrosis is a recurrent long-term consequence of exposure to ionizing radiation. However, there is also evidence that cardiac arrhythmia can occur in patients shortly after irradiation. In this study, the authors employed multielectrode arrays to investigate the short-term effects of x-ray radiation on the electrophysiological behavior of cardiomyocytes derived from human-induced pluripotent stem cells. These cardiomyocytes with spontaneous pacemaker activity were cultured on single-well multielectrode arrays. After exposure to 0, 0.5, 1, 2, 5, 10 Gy x-ray radiation, electrical activity was measured at time points ranging from 10 min to 96 h. RNA sequencing was employed to verify the expression of genes specifically involved in cardiomyocyte differentiation and function. A decrease in beating rate was observed after irradiation with 5 and 10 Gy starting 48 h after exposure. Cells exposed to higher doses of radiation were more prone to show changes in electrophysiological spatial distribution. No radiation-induced effects with respect to the corrected QT interval were detectable. Gene expression analysis showed up regulation of typical cardiac features like ACTC1 or HCN4. In this study, early dose-dependent changes in electrophysiological behavior were determined after x-ray irradiation. Results point towards a dose-dependent effect on pacemaker function of cardiomyocytes and indicate a possible connection between irradiation and short-term changes in electrophysiological cardiac function. Cardiomyocytes derived from human-induced pluripotent stem cells on multielectrode arrays represent a promising in vitro cardiac-modeling system for preclinical studies.


Assuntos
Arritmias Cardíacas/patologia , Fenômenos Eletrofisiológicos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Radiação Ionizante , Arritmias Cardíacas/etiologia , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos da radiação
6.
Stem Cell Res ; 28: 136-140, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477591

RESUMO

Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Técnicas de Cultura de Células/métodos , Duplicação Gênica , Transportador de Glucose Tipo 3/genética , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Camadas Germinativas/citologia , Humanos , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Mycoplasma/isolamento & purificação
7.
Radiat Res ; 188(5): 571-578, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28952879

RESUMO

Thirty years after the Chernobyl nuclear power plant accident we report on a patient who was a clean-up worker, who subsequently developed multiple cutaneous basal cell carcinomas (BCCs). We used several methods to assess the biological long-term effects related to low-dose external and internal radiation exposure. Specifically, because BCC risk may be increased with ionizing radiation exposure, we endeavored to determine whether the multifocal BCCs were related to the patient's past clean-up work. We assessed cytogenetic changes using peripheral blood, and internal incorporation was measured with a whole-body counter. Gene expression alterations were determined and array-based comparative genomic hybridization was performed for copy number aberration analysis of available BCC samples. In 1,053 metaphase cells, the dicentric yield of 0.005 dicentrics, with acentrics/cell, was significantly increased compared to the established calibration curve (P < 0.001). A 2.5-fold increase in total translocations was observed compared to the expected translocation rate. No internal contamination was detected with the whole-body counter. At the RNA level, two of seven genes (HNRNPA1, AGAP4/6/8) indicated internal plutonium exposure associated with the lowest dose category found in Mayak workers (>0-0.055 Gy). Relevant DNA copy number changes were only detected within the most aggressive BCC focus. Our results suggest that the examined worker had low and more recent radiation exposure with presumably internalized radionuclides that were below the detection level of a whole-body counter. The multifocal BCC could not be related to past occupational radiation exposure. The findings from our study suggest that integrating different methodologies potentially provides an improved overall assessment of individual health risks associated with or excluding occupational radiation exposure.


Assuntos
Carcinoma Basocelular/genética , Acidente Nuclear de Chernobyl , Exposição Ocupacional/efeitos adversos , Exposição à Radiação/efeitos adversos , Adulto , Carcinoma Basocelular/etiologia , Aberrações Cromossômicas/efeitos da radiação , Análise Citogenética , Variações do Número de Cópias de DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Masculino , Pessoa de Meia-Idade , Plutônio/efeitos adversos , Risco , Transcriptoma/efeitos da radiação , Contagem Corporal Total
8.
Leuk Lymphoma ; 58(12): 2895-2904, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28482719

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease in which multiple genetic abnormalities cooperate in the malignant transformation of T-lymphoid progenitors. Although in pediatric T-ALL, CDKN1B deletions occur in about 12% of the cases and represent one of the most frequent copy number alterations, neither their association with other genetic alterations nor the clinical characteristics of these patients have been determined yet. In this study, we show that loss of CDKN1B increased the prevalence of cell cycle regulator defects in immature T-ALL, usually only ascribed to CDKN2A/B deletions, and that CDKN1B deletions frequently coincide with expression of MEF2C, considered as one of the driving oncogenes in immature early T-cell precursor (ETP) ALL. However, MEF2C-dysregulation was only partially associated with the immunophenotypic characteristics used to define ETP-ALL. Furthermore, MEF2C expression levels were significantly associated with or may even be predictive of the response to glucocorticoid treatment.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Deleção de Genes , Regulação Leucêmica da Expressão Gênica , Variantes Farmacogenômicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adolescente , Biomarcadores , Linhagem Celular , Criança , Pré-Escolar , Análise por Conglomerados , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica , Glucocorticoides/uso terapêutico , Humanos , Imunofenotipagem , Lactente , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Resultado do Tratamento
9.
Int J Mol Sci ; 18(3)2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257102

RESUMO

Radiosensitivity differs in humans and likely among primates. The reasons are not well known. We examined pre-exposure gene expression in baboons (n = 17) who developed haematologic acute radiation syndrome (HARS) without pancytopenia or a more aggravated HARS with pancytopenia after irradiation. We evaluated gene expression in a two stage study design where stage I comprised a whole genome screen for messenger RNAs (mRNA) (microarray) and detection of 667 microRNAs (miRNA) (real-time quantitative polymerase chain reaction (qRT-PCR) platform). Twenty candidate mRNAs and nine miRNAs were selected for validation in stage II (qRT-PCR). None of the mRNA species could be confirmed during the validation step, but six of the nine selected candidate miRNA remained significantly different during validation. In particular, miR-425-5p (receiver operating characteristic = 0.98; p = 0.0003) showed nearly complete discrimination between HARS groups with and without pancytopenia. Target gene searches of miR-425-5p identified new potential mRNAs and associated biological processes linked with radiosensitivity. We found that one miRNA species examined in pre-exposure blood samples was associated with HARS characterized by pancytopenia and identified new target mRNAs that might reflect differences in radiosensitivity of irradiated normal tissue.


Assuntos
Síndrome Aguda da Radiação/genética , Expressão Gênica , MicroRNAs/genética , Pancitopenia/etiologia , RNA Mensageiro/genética , Animais , Modelos Animais de Doenças , Expressão Gênica/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Papio , Tolerância a Radiação
10.
PLoS One ; 11(11): e0165307, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27846229

RESUMO

For effective medical management of radiation-exposed persons after a radiological/nuclear event, blood-based screening measures in the first few days that could predict hematologic acute radiation syndrome (HARS) are needed. For HARS severity prediction, we used microRNA (miRNA) expression changes measured on days one and two after irradiation in a baboon model. Eighteen baboons underwent different patterns of partial or total body irradiation, corresponding to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts (BCC) the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. In a two Stage study design we screened 667 miRNAs using a quantitative real-time polymerase chain reaction (qRT-PCR) platform. In Stage II we validated candidates where miRNAs had to show a similar regulation (up- or down-regulated) and a significant 2-fold miRNA expression difference over H0. Seventy-two candidate miRNAs (42 for H1-2 and 30 for H2-3) were forwarded for validation. Forty-two of the H1-2 miRNA candidates from the screening phase entered the validation step and 20 of them showed a statistically significant 2-4 fold up-regulation relative to the unexposed reference (H0). Fifteen of the 30 H2-3 miRNAs were validated in Stage II. All miRNAs appeared 2-3 fold down-regulated over H0 and allowed an almost complete separation of HARS categories; the strongest candidate, miR-342-3p, showed a sustained and 10-fold down-regulation on both days 1 and 2. In summary, our data support the medical decision making of the HARS even within the first two days after exposure where diagnostic tools for early medical decision are required but so far missing. The miRNA species identified and in particular miR-342-3p add to the previously identified mRNAs and complete the portfolio of identified mRNA and miRNA transcripts for HARS prediction and medical management.


Assuntos
Síndrome Aguda da Radiação/diagnóstico , Síndrome Aguda da Radiação/genética , MicroRNAs/genética , Papio/genética , Síndrome Aguda da Radiação/sangue , Animais , Perfilação da Expressão Gênica , Masculino , MicroRNAs/metabolismo , RNA/isolamento & purificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Exposição à Radiação , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Fatores de Tempo
11.
J Invest Dermatol ; 136(11): 2287-2296, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27377697

RESUMO

The key role of RUNX3 in physiological T-cell differentiation has been extensively documented. However, information on its relevance for the development of human T-cell lymphomas or leukemias is scarce. Here, we show that alterations of RUNX3 by either heterozygous deletion or methylation of its distal promoter can be observed in the tumor cells of 15 of 21 (71%) patients suffering from Sézary syndrome, an aggressive variant of cutaneous T-cell lymphoma. As a consequence, mRNA levels of RUNX3/p46, the isoform controlled by the distal promoter, are significantly lower in Sézary syndrome tumor cells. Re-expression of RUNX3/p46 reduces cell viability and promotes apoptosis in a RUNX3/p46low cell line of cutaneous T-cell lymphoma. Based on this, we present evidence that RUNX3 can act as a tumor suppressor in a human T-cell malignancy and suggest that this effect is predominantly mediated through transcripts from its distal promoter, in particular RUNX3/p46.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Cutâneo de Células T/genética , RNA Mensageiro/genética , Apoptose , Western Blotting , Linhagem Celular Tumoral , Subunidade alfa 3 de Fator de Ligação ao Core/biossíntese , Metilação de DNA , Genes Supressores de Tumor , Humanos , Imuno-Histoquímica , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Regiões Promotoras Genéticas
12.
Mol Cell Endocrinol ; 393(1-2): 1-7, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24907458

RESUMO

BACKGROUND: 46,XY sex reversal is a rare disorder and familial cases are even more rare. The purpose of the present study was to determine the molecular basis for a family with three affected siblings who had 46,XY sex reversal. METHODS: DNA was extracted from three females with 46,XY sex reversal, two normal sisters, and both unaffected parents. All protein coding exons of the SRY and NR5A1 genes were subjected to PCR-based DNA sequencing. In addition, array comparative genomic hybridization was performed on DNA from all seven family members. A deletion was confirmed using quantitative polymerase chain reaction. Expression of SOX9 gene was quantified using reverse transcriptase polymerase chain reaction. RESULTS: A 349kb heterozygous deletion located 353kb upstream of the SOX9 gene on the long arm of chromosome 17 was discovered in the father and three affected siblings, but not in the mother. The expression of SOX9 was significantly decreased in the affected siblings. Two of three affected sisters had gonadoblastomas. CONCLUSION: This is the first report of 46,XY sex reversal in three siblings who have a paternally inherited deletion upstream of SOX9 associated with reduced SOX9 mRNA expression.


Assuntos
Deleção de Genes , Disgenesia Gonadal 46 XY/genética , Fatores de Transcrição SOX9/genética , Displasia Campomélica/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Disgenesia Gonadal 46 XY/complicações , Gonadoblastoma/etiologia , Humanos , Reação em Cadeia da Polimerase , Adulto Jovem
13.
Haematologica ; 99(4): 706-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24241490

RESUMO

The clinical heterogeneity among first relapses of childhood ETV6/RUNX1-positive acute lymphoblastic leukemia indicates that further genetic alterations in leukemic cells might affect the course of salvage therapy and be of prognostic relevance. To assess the incidence and prognostic relevance of additional copy number alterations at relapse of the disease, we performed whole genome array comparative genomic hybridization of leukemic cell DNA from 51 patients with first ETV6/RUNX1-positive relapse enrolled in and treated according to the relapse trials ALL-REZ of the Berlin-Frankfurt-Münster Study Group. Within this cohort of patients with relapsed ETV6/RUNX1-positive acute lymphoblastic leukemia, the largest analyzed for genome wide DNA copy number alterations to date, alterations were present in every ETV6/RUNX1-positive relapse and a high proportion of them occurred in recurrent overlapping chromosomal regions. Recurrent losses affected chromosomal regions 12p13, 6q21, 15q15.1, 9p21, 3p21, 5q and 3p14.2, whereas gains occurred in regions 21q22 and 12p. Loss of 12p13 including CDKN1B was associated with a shorter remission duration (P=0.009) and a lower probability of event-free survival (P=0.001). Distribution of X-chromosomal copy number alterations was gender-specific: whole X-chromosome loss occurred exclusively in females, gain of Xq only in males. Loss of the glucocorticoid receptor gene NR3C1 (5q31.3) was associated with a poor response to induction treatment (P=0.003), possibly accounting for the adverse prognosis of some of the ETV6/RUNX1-positive relapses.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Variações do Número de Cópias de DNA , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Diferenciação Celular , Aberrações Cromossômicas , Deleção Cromossômica , Cromossomos Humanos Par 5 , Cromossomos Humanos X , Feminino , Seguimentos , Humanos , Masculino , Recidiva Local de Neoplasia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Indução de Remissão , Fatores Sexuais , Resultado do Tratamento
14.
Genes Chromosomes Cancer ; 52(5): 512-22, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23362175

RESUMO

About 20% of ovarian carcinomas show alterations of 19p13 and/or 19q13 in the form of added extra material whose origin often is from chromosome 11. Based on earlier spectral karyotype analysis of the ovarian cancer cell line SKOV-3, which shows an unbalanced translocation der(19)t(11;19), the aim of this study was to determine the precise breakpoints of that derivative chromosome. After rough delimitation of the breakpoints of microdissected derivative chromosomes by array analysis, we designed a matrix of primers spanning 11q13.2 and 19p13.2 detecting multiple amplicons on genomic and cDNA. Sequencing the amplicons, accurate localization of both breakpoints on both chromosomes was possible and we found that exon 14 of HOOK2 from chromosome 19 and exon 2 of ACTN3 from chromosome 11 were fused in the derivative chromosome. The breakpoint in the HOOK2 gene was in an intrinsic triplet of nucleic acids leading to a shift in the ACTN3 reading frame in the derivative chromosome. This frameshift alteration should give rise to an early stop codon causing a loss of function of ACTN3. Signals in two-dimensional Western blotting exactly match to calculated molecular mass and the isoelectric point of the fusion protein.


Assuntos
Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 19/genética , Neoplasias Ovarianas/genética , Actinina/química , Actinina/genética , Actinina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Coloração Cromossômica , Cromossomos Humanos Par 11/genética , Análise Mutacional de DNA , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas de Fusão Oncogênica/genética , Translocação Genética
15.
Am J Hum Genet ; 91(1): 56-72, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22770980

RESUMO

Potocki-Shaffer syndrome (PSS) is a contiguous gene disorder due to the interstitial deletion of band p11.2 of chromosome 11 and is characterized by multiple exostoses, parietal foramina, intellectual disability (ID), and craniofacial anomalies (CFAs). Despite the identification of individual genes responsible for multiple exostoses and parietal foramina in PSS, the identity of the gene(s) associated with the ID and CFA phenotypes has remained elusive. Through characterization of independent subjects with balanced translocations and supportive comparative deletion mapping of PSS subjects, we have uncovered evidence that the ID and CFA phenotypes are both caused by haploinsufficiency of a single gene, PHF21A, at 11p11.2. PHF21A encodes a plant homeodomain finger protein whose murine and zebrafish orthologs are both expressed in a manner consistent with a function in neurofacial and craniofacial development, and suppression of the latter led to both craniofacial abnormalities and neuronal apoptosis. Along with lysine-specific demethylase 1 (LSD1), PHF21A, also known as BHC80, is a component of the BRAF-histone deacetylase complex that represses target-gene transcription. In lymphoblastoid cell lines from two translocation subjects in whom PHF21A was directly disrupted by the respective breakpoints, we observed derepression of the neuronal gene SCN3A and reduced LSD1 occupancy at the SCN3A promoter, supporting a direct functional consequence of PHF21A haploinsufficiency on transcriptional regulation. Our finding that disruption of PHF21A by translocations in the PSS region is associated with ID adds to the growing list of ID-associated genes that emphasize the critical role of transcriptional regulation and chromatin remodeling in normal brain development and cognitive function.


Assuntos
Transtornos Cromossômicos/genética , Cromossomos Humanos Par 11 , Anormalidades Craniofaciais/genética , Histona Desacetilases/genética , Deficiência Intelectual/genética , Translocação Genética , Adolescente , Adulto , Animais , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 11/genética , Exostose Múltipla Hereditária , Feminino , Genótipo , Haploinsuficiência , Humanos , Recém-Nascido , Masculino , Canal de Sódio Disparado por Voltagem NAV1.3 , Canais de Sódio/genética , Peixe-Zebra
16.
Am J Hum Genet ; 90(1): 61-8, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22243965

RESUMO

Low copper and ceruloplasmin in serum are the diagnostic hallmarks for Menkes disease, Wilson disease, and aceruloplasminemia. We report on five patients from four unrelated families with these biochemical findings who presented with a lethal autosomal-recessive syndrome of congenital cataracts, hearing loss, and severe developmental delay. Cerebral MRI showed pronounced cerebellar hypoplasia and hypomyelination. Homozygosity mapping was performed and displayed a region of commonality among three families at chromosome 3q25. Deep sequencing and conventional sequencing disclosed homozygous or compound heterozygous mutations for all affected subjects in SLC33A1 encoding a highly conserved acetylCoA transporter (AT-1) required for acetylation of multiple gangliosides and glycoproteins. The mutations were found to cause reduced or absent AT-1 expression and abnormal intracellular localization of the protein. We also showed that AT-1 knockdown in HepG2 cells leads to reduced ceruloplasmin secretion, indicating that the low copper in serum is due to reduced ceruloplasmin levels and is not a sign of copper deficiency. The severity of the phenotype implies an essential role of AT-1 in proper posttranslational modification of numerous proteins, without which normal lens and brain development is interrupted. Furthermore, AT-1 defects are a new and important differential diagnosis in patients with low copper and ceruloplasmin in serum.


Assuntos
Catarata/genética , Ceruloplasmina/metabolismo , Cobre/sangue , Perda Auditiva/genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Sequência de Bases , Catarata/congênito , Cerebelo/anormalidades , Cerebelo/crescimento & desenvolvimento , Ceruloplasmina/análise , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 3/genética , Feminino , Perda Auditiva/congênito , Células Hep G2 , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras/biossíntese , Dados de Sequência Molecular , Índice de Gravidade de Doença
17.
Histopathology ; 59(3): 549-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21906127

RESUMO

AIMS: Low-grade flat ductal intraepithelial neoplasia (DIN1a, flat epithelial atypia) is one of the earliest morphologically recognizable neoplastic lesions of the breast. Frequently, it occurs concomitantly with lobular intraepithelial neoplasia (LIN). We aimed to elucidate chromosomal aberrations in these early neoplastic breast lesions with the use of array comparative genomic hybridization analysis. METHODS AND RESULTS: Laser capture microdissection of 12 archival formalin-fixed, paraffin-embedded specimens harbouring foci of both DIN1a and LIN was performed. All analysed cases of DIN1a and LIN showed chromosomal gains and losses. The aberration encountered most often was loss of 16q, noted in seven DIN1a (70% of those successfully examined) and 10 LIN (91%) cases. The next most common alteration was a gain on 1q, noted in four DIN1a (40%) and seven LIN (64%) cases. CONCLUSIONS: The results show concurrent chromosomal aberrations of 1q gains and 16q losses in several cases with coexisting LIN and DIN1a. These aberrations are known to be common in low-grade invasive (ductal and lobular) carcinomas as well as in more advanced (conventional) types of low-grade ductal intraepithelial neoplasia (DIN) (low-grade ductal carcinoma in situ). Our results raise the possibility of similar molecular-genetic pathways in coexisting LIN and low-grade flat DIN.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Lobular/genética , Aberrações Cromossômicas , Neoplasias Primárias Múltiplas/genética , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Lobular/patologia , Hibridização Genômica Comparativa , Feminino , Humanos , Neoplasias Primárias Múltiplas/patologia
18.
Hum Mutat ; 32(12): 1427-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21882292

RESUMO

During the past years, significant advances have been made in our understanding of the development of the human brain, and much of this knowledge comes from genetic studies of disorders associated with abnormal brain development. We employed array-comparative genomic hybridization (CGH) to investigate copy number variants (CNVs) in a cohort of 169 patients with various structural brain malformations including lissencephaly, polymicrogyria, focal cortical dysplasia, and corpus callosum agenesis. The majority of the patients had intellectual disabilities (ID) and suffered from symptomatic epilepsy. We detected at least one rare CNV in 38 patients (22.5%). All genes located within the rare CNVs were subjected to enrichment analysis for specific Gene Ontology Terms or Kyoto Encyclopedia of Genes and Genomes pathways and to protein-protein network analysis. Based on these analyses, we propose that genes involved in "axonal transport," "cation transmembrane transporter activity," and the "c-Jun N-terminal kinase (JNK) cascade" play a significant role in the etiology of brain malformations. This is to the best of our knowledge the first systematic study of CNVs in patients with structural brain malformations and our data show that CNVs play an important role in the etiology of these malformations, either as direct causes or as genetic risk factors.


Assuntos
Encéfalo/diagnóstico por imagem , Variações do Número de Cópias de DNA/genética , Frequência do Gene , Malformações do Sistema Nervoso/genética , Proteínas/genética , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/genética , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Feminino , Dosagem de Genes/genética , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Masculino , Malformações do Sistema Nervoso/diagnóstico por imagem , Fenótipo , Radiografia , Tomógrafos Computadorizados
19.
J Exp Med ; 208(8): 1585-93, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21788410

RESUMO

The transcription factor E2A is essential for lymphocyte development. In this study, we describe a recurrent E2A gene deletion in at least 70% of patients with Sézary syndrome (SS), a subtype of T cell lymphoma. Loss of E2A results in enhanced proliferation and cell cycle progression via derepression of the protooncogene MYC and the cell cycle regulator CDK6. Furthermore, by examining the gene expression profile of SS cells after restoration of E2A expression, we identify several E2A-regulated genes that interfere with oncogenic signaling pathways, including the Ras pathway. Several of these genes are down-regulated or lost in primary SS tumor cells. These data demonstrate a tumor suppressor function of E2A in human lymphoid cells and could help to develop new treatment strategies for human lymphomas with altered E2A activity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Síndrome de Sézary/genética , Transdução de Sinais/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Hibridização Genômica Comparativa , Quinase 6 Dependente de Ciclina/metabolismo , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Leucócitos Mononucleares , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Proteínas ras/metabolismo
20.
Eur J Hum Genet ; 19(9): 947-58, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21505449

RESUMO

Patients with an interstitial 13q deletion that contains the RB1 gene show retinoblastoma and variable clinical features. Relationship between phenotypic expression and loss of specific neighboring genes are unresolved, yet. We obtained clinical, cytogenetic and molecular data in 63 patients with an interstitial 13q deletion involving RB1. Whole-genome array analysis or customized high-resolution array analysis for 13q14.11q14.3 was performed in 38 patients, and cytogenetic analysis was performed in 54 patients. Deletion sizes ranged between 4.2 kb and more than 33.43 Mb; breakpoints were non-recurrent. Sequence analysis of deletion junctions in five patients revealed microhomology and insertion of 2-34 base pairs suggestive of non-homologous end joining. Milder phenotypic expression of retinoblastoma was observed in patients with deletions larger than 1 Mb, which contained the MED4 gene. Clinical features were compared between patients with small (within 13q14), medium (within 13q12.3q21.2) and large (within 13q12q31.2) deletions. Patients with a small deletion can show macrocephaly, tall stature, obesity, motor and/or speech delay. Patients with a medium deletion show characteristic facial features, mild to moderate psychomotor delay, short stature and microcephaly. Patients with a large deletion have characteristic craniofacial dysmorphism, short stature, microcephaly, mild to severe psychomotor delay, hypotonia, constipation and feeding problems. Additional features included deafness, seizures and brain and heart anomalies. We found no correlation between clinical features and parental origin of the deletion. Our data suggest that hemizygous loss of NUFIP1 and PCDH8 may contribute to psychomotor delay, deletion of MTLR1 to microcephaly and loss of EDNRB to feeding difficulties and deafness.


Assuntos
Transtornos Cromossômicos/genética , Genes do Retinoblastoma/genética , Estudos de Associação Genética , Retinoblastoma/genética , Anormalidades Múltiplas/genética , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 13/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Microcefalia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA