Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Blood Adv ; 8(13): 3453-3463, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38608257

RESUMO

ABSTRACT: Clonal hematopoiesis (CH) is an age-associated phenomenon leading to an increased risk of both hematologic malignancy and nonmalignant organ dysfunction. Increasingly available genetic testing has made the incidental discovery of CH clinically common yet evidence-based guidelines and effective management strategies to prevent adverse CH health outcomes are lacking. To address this gap, the prospective CHIVE (clonal hematopoiesis and inflammation in the vasculature) registry and biorepository was created to identify and monitor individuals at risk, support multidisciplinary CH clinics, and refine taxonomy and standards of practice for CH risk mitigation. Data from the first 181 patients enrolled in this prospective registry recapitulate the molecular epidemiology of CH from biobank-scale retrospective studies, with DNMT3A, TET2, ASXL1, and TP53 as the most commonly mutated genes. Blood counts across all hematopoietic lineages trended lower in patients with CH. In addition, patients with CH had higher rates of end organ dysfunction, in particular chronic kidney disease. Among patients with CH, variant allele frequency was independently associated with the presence of cytopenias and progression to hematologic malignancy, whereas other common high-risk CH clone features were not clear. Notably, accumulation of multiple distinct high-risk clone features was also associated with cytopenias and hematologic malignancy progression, supporting a recently published CH risk score. Surprisingly, ∼30% of patients enrolled in CHIVE from CH clinics were adjudicated as not having clonal hematopoiesis of indeterminate potential, highlighting the need for molecular standards and purpose-built assays in this field. Maintenance of this well-annotated cohort and continued expansion of CHIVE to multiple institutions are underway and will be critical to understanding how to thoughtfully care for this patient population.


Assuntos
Hematopoiese Clonal , Inflamação , Humanos , Estudos Prospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Sistema de Registros , Neoplasias Hematológicas/genética , Mutação , Adulto
2.
J Mol Diagn ; 26(7): 563-573, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588769

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon in which hematopoietic stem cells acquire mutations in a select set of genes commonly mutated in myeloid neoplasia which then expand clonally. Current sequencing assays to detect CHIP mutations are not optimized for the detection of these variants and can be cost-prohibitive when applied to large cohorts or to serial sequencing. In this study, an affordable (approximately US $8 per sample), accurate, and scalable sequencing assay for CHIP is introduced and validated. The efficacy of the assay was demonstrated by identifying CHIP mutations in a cohort of 456 individuals with DNA collected at multiple time points in Vanderbilt University's biobank and quantifying clonal expansion rates over time. A total of 101 individuals with CHIP/clonal cytopenia of undetermined significance were identified, and individual-level clonal expansion rate was calculated using the variant allele fraction at both time points. Differences in clonal expansion rate by driver gene were observed, but there was also significant individual-level heterogeneity, emphasizing the multifactorial nature of clonal expansion. Additionally, mutation co-occurrence and clonal competition between multiple driver mutations were explored.


Assuntos
Hematopoiese Clonal , Mutação , Humanos , Hematopoiese Clonal/genética , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Adulto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/economia , Análise Custo-Benefício , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Evolução Clonal/genética , Idoso de 80 Anos ou mais , Hematopoese/genética
3.
Blood Adv ; 8(14): 3665-3678, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507736

RESUMO

ABSTRACT: Clonal hematopoiesis (CH) is an age-associated phenomenon that increases the risk of hematologic malignancy and cardiovascular disease. CH is thought to enhance disease risk through inflammation in the peripheral blood.1 Here, we profile peripheral blood gene expression in 66 968 single cells from a cohort of 17 patients with CH and 7 controls. Using a novel mitochondrial DNA barcoding approach, we were able to identify and separately compare mutant Tet methylcytosine dioxygenase 2 (TET2) and DNA methyltransferase 3A (DNMT3A) cells with nonmutant counterparts. We discovered the vast majority of mutated cells were in the myeloid compartment. Additionally, patients harboring DNMT3A and TET2 CH mutations possessed a proinflammatory profile in CD14+ monocytes through previously unrecognized pathways such as galectin and macrophage inhibitory factor. We also found that T cells from patients with CH, although mostly unmutated, had decreased expression of GTPase of the immunity associated protein genes, which are critical to T-cell development, suggesting that CH impairs T-cell function.


Assuntos
Hematopoiese Clonal , Inflamação , Humanos , Inflamação/genética , Genótipo , Mutação , Perfilação da Expressão Gênica , Dioxigenases , DNA Metiltransferase 3A/metabolismo , Masculino , Feminino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
4.
medRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37986782

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon that occurs when hematopoietic stem cells acquire mutations in a select set of genes commonly mutated in myeloid neoplasia which then expand clonally. Current sequencing assays to detect CHIP are not optimized for the detection of these variants and can be cost-prohibitive when applied to large cohorts or serial sequencing. Here, we present and validate a CHIP targeted sequencing assay that is affordable (∼$8/sample), accurate and highly scalable. To demonstrate the utility of this assay, we detected CHIP in a cohort of 456 individuals with DNA collected at multiple timepoints in the Vanderbilt BioVU biobank and quantified clonal expansion rates over time. A total of 101 individuals with CHIP were identified, and individual-level clonal expansion rate was calculated using the variant allele fraction (VAF) at both timepoints. Differences in clonal expansion rate by driver gene were observed, but there was also significant individual-level heterogeneity, emphasizing the multifactorial nature of clonal expansion. We further describe the mutation co-occurrence and clonal competition between multiple driver mutations.

5.
J. health med. sci. (Print) ; 8(3): 141-148, jul.2022. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1442512

RESUMO

INTRODUCCIÓN La telerradiología se basa en el despliegue de radiólogos a distancia para evaluar estudios de dicha especialidad. Actualmente hay evidencia limitada sobre las tasas de error de evaluaciones en telerradiología. Este estudio corresponde a una revisión de las discrepancias entre los informes preliminares y finales de tomografía computada (TC) de una unidad de urgencia telerradiológica. OBJETIVO Determinar las discrepancias de las reevaluaciones (addendum) en los informes radiológicos de TC en una unidad de telerradiología de urgencia. MATERIALES Y MÉTODOS La recolección de datos se planificó a modo de tabla de cotejo, en la cual se tabularon casos de reevaluaciones de urgencia desde el mes de enero hasta mayo del año 2021, en base a la categorización Agrawal. RESULTADOS De una total de 111.599, 836 informes presentaron addendum, que corresponden al 0,74% del total informado, La categoría Agrawal 0 agrupó la mayor cantidad de casos y los exámenes de TC especialidad de cuerpo se encuentran los segmentos con mayores requerimientos de reevaluación. Discusión: Los valores obtenidos permiten establecer una baja incidencia de reevaluaciones y de la gravedad de estas, apuntando a errores asociados a canales de comunicación, redacción y elaboración de informes con especial énfasis en estudios TC Tórax y Abdomen/Pelvis. CONCLUSIÓN El porcentaje de cumplimiento de un 99,26% de exactitud en los informes permite concluir la alta confiabilidad y la calidad del servicio de telerradiología de la empresa en cuestión durante el periodo evaluado y el empleo de medidas correctivas basadas en organización, gestión e instrumentalización tecnológica


Assuntos
Humanos , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Telemedicina/estatística & dados numéricos , Serviços Médicos de Emergência/estatística & dados numéricos , Epidemiologia Descritiva
6.
Stem Cells ; 39(9): 1236-1252, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938072

RESUMO

Interplay between embryonic enteric neural stem cells (ENSCs) and enteric mesenchymal cells (EMCs) in the embryonic gut is essential for normal development of the enteric nervous system. Disruption of these interactions underlies the pathogenesis of intestinal aganglionosis in Hirschsprung disease (HSCR). ENSC therapy has been proposed as a possible treatment for HSCR, but whether the survival and development of postnatal-derived ENSCs similarly rely on signals from the mesenchymal environment is unknown and has important implications for developing protocols to expand ENSCs for cell transplantation therapy. Enteric neural crest-derived cells (ENCDCs) and EMCs were cultured from the small intestine of Wnt1-Rosa26-tdTomato mice. EMCs promoted the expansion of ENCDCs 9.5-fold by inducing ENSC properties, including expression of Nes, Sox10, Sox2, and Ngfr. EMCs enhanced the neurosphere-forming ability of ENCDCs, and this persisted after withdrawal of the EMCs. These effects were mediated by paracrine factors and several ligands known to support neural stem cells were identified in EMCs. Using the optimized expansion procedures, neurospheres were generated from small intestine of the Ednrb-/- mouse model of HSCR. These ENSCs had similar proliferative and migratory capacity to Ednrb+/+ ENSCs, albeit neurospheres contained fewer neurons. ENSCs derived from Ednrb-/- mice generated functional neurons with similar calcium responses to Ednrb+/+ ENSCs and survived after transplantation into the aganglionic colon of Ednrb-/- recipients. EMCs act as supporting cells to ENSCs postnatally via an array of synergistically acting paracrine signaling factors. These properties can be leveraged to expand autologous ENSCs from patients with HSCR mutations for therapeutic application.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Células-Tronco Neurais , Animais , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/terapia , Humanos , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA