Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 2(3): 100742, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34430915

RESUMO

The visual system is the best system to study activity-dependent sensory circuit development. The connections from the retina to the dorsal lateral geniculate nucleus, the retinogeniculate connections, undergo extensive remodeling during early postnatal life. Thus, techniques that allow the expression of transgenes early in the developing retina are essential to study visual system development. Here, we describe a protocol to express genes-of-interest in the developing mouse retina via in utero intraocular adeno-associated virus injections. For complete details on the use and execution of this protocol, please refer to Yasuda et al. (2021).


Assuntos
Injeções Intraoculares/métodos , Retina/embriologia , Transgenes/genética , Animais , Dependovirus/genética , Feto/cirurgia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos/embriologia , Retina/crescimento & desenvolvimento , Sinapses , Transcriptoma/genética , Vias Visuais/crescimento & desenvolvimento
2.
Neurosci Res ; 116: 60-69, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27965136

RESUMO

Activity-dependent remodeling of neuronal connections is critical to nervous system development and function. These processes rely on the ability of synapses to detect neuronal activity and translate it into the appropriate molecular signals. One way to convert neuronal activity into downstream signaling is the proteolytic cleavage of cell adhesion molecules (CAMs). Here we review studies demonstrating the mechanisms by which proteolytic processing of CAMs direct the structural and functional remodeling of excitatory glutamatergic synapses during development and plasticity. Specifically, we examine how extracellular proteolytic cleavage of CAMs switches on or off molecular signals to 1) permit, drive, or restrict synaptic maturation during development and 2) strengthen or weaken synapses during adult plasticity. We will also examine emerging studies linking improper activity-dependent proteolytic processing of CAMs to neurological disorders such as schizophrenia, brain tumors, and Alzheimer's disease. Together these findings suggest that the regulation of activity-dependent proteolytic cleavage of CAMs is vital to proper brain development and lifelong function.


Assuntos
Encéfalo/fisiologia , Moléculas de Adesão Celular/metabolismo , Sinapses/fisiologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Neoplasias Encefálicas/metabolismo , Humanos , Plasticidade Neuronal , Neurônios/metabolismo , Proteólise , Esquizofrenia/metabolismo
3.
Sci Rep ; 6: 33592, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27627962

RESUMO

Functional synapse formation requires tight coordination between pre- and post-synaptic termini. Previous studies have shown that postsynaptic expression of heparan sulfate proteoglycan syndecan-2 (SDC2) induces dendritic spinogenesis. Those SDC2-induced dendritic spines are frequently associated with presynaptic termini. However, how postsynaptic SDC2 accelerates maturation of corresponding presynaptic termini is unknown. Because fibroblast growth factor 22 (FGF22), a heparan sulfate binding growth factor, has been shown to act as a presynaptic organizer released from the postsynaptic site, it seems possible that postsynaptic SDC2 presents FGF22 to the presynaptic FGF receptor to promote presynaptic differentiation. Here, we show that postsynaptic SDC2 uses its ectodomain to interact with and facilitate dendritic filopodial targeting of FGF22, triggering presynaptic maturation. Since SDC2 also enhances filopodial targeting of NMDAR via interaction with the CASK-mLIN7-MINT1 adaptor complex, presynaptic maturation promoted by FGF22 further feeds back to activate NMDAR at corresponding postsynaptic sites through increased neurotransmitter release and, consequently, promotes the dendritic filopodia-spines (F-S) transition. Meanwhile, via regulation of the KIF17 motor, CaMKII (activated by the NMDAR pathway) may further facilitate FGF22 targeting to dendritic filopodia that receive presynaptic stimulation. Our study suggests a positive feedback that promotes the coordination of postsynaptic and presynaptic differentiation.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transdução de Sinais , Sindecana-2/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Espinhas Dendríticas/metabolismo , Heparitina Sulfato/metabolismo , Cinesinas , Camundongos , Modelos Biológicos , Ligação Proteica , Domínios Proteicos , Pseudópodes/metabolismo , Ratos Sprague-Dawley , Sindecana-2/química
4.
Cell Signal ; 26(9): 1846-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24793302

RESUMO

The 5-HT1A receptor is a G protein coupled receptor (GPCR) that activates G proteins of the Gαi/o family. 5-HT1A receptors expressed in the raphe, hippocampus and prefrontal cortex are implicated in the control of mood and are targets for anti-depressant drugs. Regulators of G protein signaling (RGS) proteins are members of a large family that play important roles in signal transduction downstream of G protein coupled receptors (GPCRs). The main role of RGS proteins is to act as GTPase accelerating proteins (GAPs) to dampen or negatively regulate GPCR-mediated signaling. We have shown that a mouse expressing Gαi2 that is insensitive to all RGS protein GAP activity has an anti-depressant-like phenotype due to increased signaling of postsynaptic 5-HT1A receptors, thus implicating the 5-HT1A receptor-Gαi2 complex as an important target. Here we confirm that RGS proteins act as GAPs to regulate signaling to adenylate cyclase and the mitogen-activated protein kinase (MAPK) pathway downstream of the 5-HT1A receptor, using RGS-insensitive Gαi2 protein expressed in C6 cells. We go on to use short hairpin RNA (shRNA) to show that RGS19 is responsible for the GAP activity in C6 cells and also that RGS19 acts as a GAP for 5-HT1A receptor signaling in human neuroblastoma SH-SY5Y cells and primary hippocampal neurons. In addition, in both cell types the synergy between 5-HT1A receptor and the fibroblast growth factor receptor 1 in stimulating the MAPK pathway is enhanced following shRNA reduction of RGS19 expression. Thus RGS19 may be a viable new target for anti-depressant medications.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas RGS/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Inibidores de Adenilil Ciclases , Adenilil Ciclases/metabolismo , Animais , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/farmacologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos ICR , Fosforilação/efeitos dos fármacos , Proteínas RGS/antagonistas & inibidores , Proteínas RGS/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Nature ; 465(7299): 783-7, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20505669

RESUMO

The differential formation of excitatory (glutamate-mediated) and inhibitory (GABA-mediated) synapses is a critical step for the proper functioning of the brain. An imbalance in these synapses may lead to various neurological disorders such as autism, schizophrenia, Tourette's syndrome and epilepsy. Synapses are formed through communication between the appropriate synaptic partners. However, the molecular mechanisms that mediate the formation of specific synaptic types are not known. Here we show that two members of the fibroblast growth factor (FGF) family, FGF22 and FGF7, promote the organization of excitatory and inhibitory presynaptic terminals, respectively, as target-derived presynaptic organizers. FGF22 and FGF7 are expressed by CA3 pyramidal neurons in the hippocampus. The differentiation of excitatory or inhibitory nerve terminals on dendrites of CA3 pyramidal neurons is specifically impaired in mutants lacking FGF22 or FGF7. These presynaptic defects are rescued by postsynaptic expression of the appropriate FGF. FGF22-deficient mice are resistant to epileptic seizures, and FGF7-deficient mice are prone to them, as expected from the alterations in excitatory/inhibitory balance. Differential effects of FGF22 and FGF7 involve both their distinct synaptic localizations and their use of different signalling pathways. These results demonstrate that specific FGFs act as target-derived presynaptic organizers and help to organize specific presynaptic terminals in the mammalian brain.


Assuntos
Diferenciação Celular , Potenciais Pós-Sinápticos Excitadores/fisiologia , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Sinapses/classificação , Sinapses/metabolismo , Animais , Células Cultivadas , Dendritos/metabolismo , Suscetibilidade a Doenças , Epilepsia/induzido quimicamente , Epilepsia/genética , Epilepsia/fisiopatologia , Fator 7 de Crescimento de Fibroblastos/deficiência , Fator 7 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/metabolismo , Hipocampo/patologia , Hibridização In Situ , Excitação Neurológica , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Terminações Pré-Sinápticas/classificação , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Terminações Pré-Sinápticas/ultraestrutura , Células Piramidais/citologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/radioterapia , Sinapses/patologia , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Vesículas Sinápticas/ultraestrutura , Ácido gama-Aminobutírico/metabolismo
6.
Mol Biol Cell ; 14(7): 2921-34, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857875

RESUMO

N-methyl-d-aspartate (NMDA) receptors regulate structural plasticity by modulating actin organization within dendritic spines. Herein, we report identification and characterization of p250GAP, a novel GTPase-activating protein for Rho family proteins that interacts with the GluRepsilon2 (NR2B) subunit of NMDA receptors in vivo. The p250GAP mRNA was enriched in brain, with high expression in cortex, corpus striatum, hippocampus, and thalamus. Within neurons, p250GAP was highly concentrated in the postsynaptic density and colocalized with the GluRepsilon2 (NR2B) subunit of NMDA receptors and with postsynaptic density-95. p250GAP promoted GTP hydrolysis of Cdc42 and RhoA in vitro and in vivo. When overexpressed in neuroblastoma cells, p250GAP suppressed the activities of Rho family proteins, which resulted in alteration of neurite outgrowth. Finally, NMDA receptor stimulation led to dephosphorylation and redistribution of p250GAP in hippocampal slices. Together, p250GAP is likely to be involved in NMDA receptor activity-dependent actin reorganization in dendritic spines.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Células Cultivadas , Proteínas Ativadoras de GTPase/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Neuritos/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Genes Dev ; 17(10): 1201-6, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12756225

RESUMO

tob is a member of antiproliferative family genes. Mice lacking tob are prone to spontaneous formation of tumors. The occurrence rate of diethylnitrosamine-induced liver tumors is higher in tob(-/-) mice than in wild-type mice. tob(-/-)p53(-/-) mice show accelerated tumor formation in comparison with single null mice. Expression of cyclin D1 mRNA is increased in the absence of Tob and is reduced by Tob. Tob acts as a transcriptional corepressor and suppresses the cyclin D1 promoter activity through an interaction with histone deacetylase. Levels of tob mRNA are often decreased in human cancers, implicating tob in cancer development.


Assuntos
Proteínas de Transporte/genética , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Experimentais/genética , Transcrição Gênica , Proteínas Supressoras de Tumor , Animais , Proteínas de Transporte/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Fibroblastos/metabolismo , Genes Supressores de Tumor , Histona Desacetilases/metabolismo , Humanos , Camundongos , Neoplasias Experimentais/etiologia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA