Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 124(Pt B): 110949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725848

RESUMO

Endometritis plays an important role in mare infertility. Certain infectious agents interfere with the innate immune system of endometrium, causing a systemic inflammatory response that lasts for a long time and circulates via the blood or cellular degeneration, leading to endometritis due to bacterial endotoxins. Different small, non-coding RNA molecules are involved in many biological functions. For instance, microRNAs (miRNAs) are involved in the post-transcriptional regulation of gene expression. These miRNAs are important regulators of gene expression, primarily via inhibiting transcription and translation processes. This manuscript reviews: (1) pathomorphological findings in equine endometritis, (2) the expression and effects of eca-miR-17, eca-miR-223, eca-miR-200a, eca-miR-155, and eca-miR-205 in endometritis and (3) the therapeutic role of miRNA in equine endometritis. The miRNAs have a vital regulatory role in a wide range of inflammatory diseases by regulating the molecular mechanism of cytokines that cause inflammation through signal pathways. This review emphasizes the demand for cutting-edge genetic technologies and the development of novel pharmaceutical preparations to improve our understanding of the genes encoding by these miRNAs. It also focuses on the efficacy of miRNAs for control, early diagnosis, and prevention of endometritis.


Assuntos
Endometrite , MicroRNAs , Humanos , Animais , Cavalos , Feminino , Endometrite/diagnóstico , Endometrite/terapia , Endometrite/veterinária , MicroRNAs/metabolismo , Endométrio/metabolismo , Inflamação/metabolismo , Regulação da Expressão Gênica
2.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3797-3807, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37347266

RESUMO

Acute lung injury (ALI) and sepsis are complicated syndromes that are often left untreated in critically ill patients. 6-Gingerol is a phenolic phytochemical compound that is found in fresh ginger, has pharmacological effects against inflammation. This study explored the roles of 6-gingerol in a mouse model of acute lung injury caused by lipopolysaccharide (LPS) and RAW-264.7 cells inflammation. The LPS-induced animal model underwent histopathological examinations, and RAW-264.7 cells viability was determined by Cell counting Kit-8 (CCk-8) assay. Additionally, qRT-PCR, Immunofluorescence, Western blot, and ELISA were used in vivo and in vitro to identify inflammatory factors and proteins associated with NF-κB and MAPK signaling pathways. In a histological examination 6-gingerol exhibited protective effects. Moreover, 6-gingerol elevated cell viability and downregulated inflammatory factors Interlukin-1ß (IL-1ß), Interlukin-6 (IL-6) and Tumor necrosis factor-α (TNF-α) in LPS-treated RAW-264.7 cells. Furthermore, 6-gingerol decreased phosphorylation of P65, P38 and the level of JNK in NF-κB and MAPK pathways. Importantly, 6-gingerol increased transcript abundance of miR-322-5p which suppressed by LPS and miR-322-5p downregulation negated the protective functions of 6-gingerol. The protective activity of 6-gingerol was mediated by miR-322-5p up-regulation.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Células RAW 264.7 , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Lesão Pulmonar Aguda/patologia
3.
Biology (Basel) ; 11(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35741360

RESUMO

Previous studies reported the physical, transcriptome, and metabolome changes in in vitro acute heat-stressed (38 °C versus 43 °C for 2 h) bovine granulosa cells. Granulosa cells exhibited transient proliferation senescence, oxidative stress, an increased rate of apoptosis, and a decline in steroidogenic activity. In this study, we performed a joint integration and network analysis of metabolomic and transcriptomic data to further narrow down and elucidate the role of differentially expressed genes, important metabolites, and relevant cellular and metabolic pathways in acute heat-stressed granulosa cells. Among the significant (raw p-value < 0.05) metabolic pathways where metabolites and genes converged, this study found vitamin B6 metabolism, glycine, serine and threonine metabolism, phenylalanine metabolism, arginine biosynthesis, tryptophan metabolism, arginine and proline metabolism, histidine metabolism, and glyoxylate and dicarboxylate metabolism. Important significant convergent biological pathways included ABC transporters and protein digestion and absorption, while functional signaling pathways included cAMP, mTOR, and AMPK signaling pathways together with the ovarian steroidogenesis pathway. Among the cancer pathways, the most important pathway was the central carbon metabolism in cancer. Through multiple analysis queries, progesterone, serotonin, citric acid, pyridoxal, L-lysine, succinic acid, L-glutamine, L-leucine, L-threonine, L-tyrosine, vitamin B6, choline, and CYP1B1, MAOB, VEGFA, WNT11, AOX1, ADCY2, ICAM1, PYGM, SLC2A4, SLC16A3, HSD11B2, and NOS2 appeared to be important enriched metabolites and genes, respectively. These genes, metabolites, and metabolic, cellular, and cell signaling pathways comprehensively elucidate the mechanisms underlying the intricate fight between death and survival in acute heat-stressed bovine granulosa cells and essentially help further our understanding (and will help the future quest) of research in this direction.

4.
J Reprod Immunol ; 150: 103471, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032930

RESUMO

Endometritis is inflammation of endometrium due to various factors and is a common cause of infertility. Several remedies used for endometritis like antibiotics, hormones, and herbs. Studies confirm that microRNAs play a significant role in various inflammatory diseases. However, the role of miR-424-5p in endometritis is not clear. In our study, histopathology, real-time quantitative polymerase chain reaction, Western blot analysis, immunofluorescence, ELISA, and dual-luciferase reporter assay were used to elucidate the effect of miR-424-5p in lipopolysaccharide (LPS)-primed inflammatory response in bovine endometrial epithelial cells (BEECs) and clarify the potential mechanism. Our results revealed that miR-424-5p mimics noticeably decrease the production of proinflammatory cytokines (IL-1ß, IL-6, and TNF-α), while miR-424-5p inhibitors have inverse effects in BEECs. Moreover, overexpression of miR-424-5p on BEECs cells also suppressed NF-κB p65 activation. Afterwards, we verified that miR-424-5p inhibited Interleukin 1 Receptor Associated Kinase 2 (IRAK2) expression by binding to the 3'-UTR of IRAK2 mRNA. Further, co-transfection of miR-424-5p inhibitors and siRNA-IRAK2 revealed that negative regulation of miR-424-5p on LPS-induced inflammatory response in BEECs was mediated by IRAK2.Mutually, miR-424-5p pharmacologic stabilization represents an entirely unique medical aid for cow endometritis and other inflammation-related diseases.


Assuntos
Endometrite , MicroRNAs , Animais , Bovinos , Endometrite/patologia , Endométrio/patologia , Células Epiteliais/patologia , Feminino , Inflamação/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais
5.
Genes (Basel) ; 10(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842416

RESUMO

Anti-Mullerian hormone (AMH) is an important reproductive marker of ovarian reserve produced by granulosa cells (GCs) of pre-antral and early-antral ovarian follicles in several species, including cattle. This hormone plays a vital role during the recruitment of primordial follicles and follicle stimulating hormone (FSH)-dependent follicular growth. However, the regulatory mechanism of AMH expression in follicles is still unclear. In this study, we compared the expression of AMH, AMHR-II, BMP2, BMP6, FSHR, and LHCGR genes during follicular development. In-vitro expression study was performed with and without FSH for AMH, AMHR-II, BMP2, and BMP6 genes in bovine GCs which were isolated from 3-8 mm follicles. Association among the mRNA expression and hormone level was estimated. GCs were collected from small (3-8 mm), medium (9-12 mm) and large size (13 to 24 mm) follicles before, during onset, and after deviation, respectively. Further, mRNA expression, hormones (AMH, FSH, and LH), apoptosis of GCs, and cell viability were detected by qRT-PCR, ELISA, flow cytometry, and spectrophotometry. AMH, AMHR-II, BMP2, and FSHR genes were highly expressed in small and medium follicles as compared to large ones. In addition, the highest level of AMH protein (84.14 ± 5.41 ng/mL) was found in medium-size follicles. Lower doses of FSH increased the viability of bovine GCs while higher doses repressed them. In-vitro cultured GCs treated with FSH significantly increased the AMH, AMHR-II, and BMP2 expression levels at lower doses, while expression levels decreased at higher doses. We found an optimum level of FSH (25 ng/mL) which can significantly enhance AMH and BMP2 abundance (p < 0.05). In summary, AMH, AMHR-II, and BMP2 genes showed a higher expression in follicles developed in the presence of FSH. However, lower doses of FSH demonstrated a stimulatory effect on AMH and BMP2 expression, while expression started to decline at the maximum dose. In this study, we have provided a better understanding of the mechanisms regulating AMH, AMHR II, and BMP2 signaling in GCs during folliculogenesis, which would improve the outcomes of conventional assisted reproductive technologies (ARTs), such as superovulation and oestrus synchronization in bovines.


Assuntos
Hormônio Antimülleriano/genética , Bovinos/genética , Células da Granulosa/metabolismo , Animais , Hormônio Antimülleriano/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/genética , Líquido Folicular/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Folículo Ovariano/metabolismo , RNA Mensageiro/genética , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA