Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771610

RESUMO

Metabolic reprogramming is a well-known hallmark of cancer, whereby the development of drugs that target cancer cell metabolism is gaining momentum. However, when establishing preclinical studies and clinical trials, it is often neglected that a tumor mass is a complex system in which cancer cells coexist and interact with several types of microenvironment populations, including endothelial cells, fibroblasts and immune cells. We are just starting to understand how such populations are affected by the metabolic changes occurring in a transformed cell and little is known about the impact of metabolism-targeting drugs on the non-malignant tumor components. Here we provide a general overview of the links between cancer cell metabolism and tumor microenvironment (TME), particularly focusing on the emerging literature reporting TME-specific effects of metabolic therapies.

2.
J Exp Clin Cancer Res ; 40(1): 251, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376225

RESUMO

BACKGROUND: Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. METHODS: scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1's role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. RESULTS: Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate of NADP + consuming reactions was observed suggesting the less availability of NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. CONCLUSION: Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias Pancreáticas/genética , Animais , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Transfecção
3.
Cell Rep ; 35(3): 109002, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882309

RESUMO

Complex I (CI) is the largest enzyme of the mitochondrial respiratory chain, and its defects are the main cause of mitochondrial disease. To understand the mechanisms regulating the extremely intricate biogenesis of this fundamental bioenergetic machine, we analyze the structural and functional consequences of the ablation of NDUFS3, a non-catalytic core subunit. We show that, in diverse mammalian cell types, a small amount of functional CI can still be detected in the complete absence of NDUFS3. In addition, we determine the dynamics of CI disassembly when the amount of NDUFS3 is gradually decreased. The process of degradation of the complex occurs in a hierarchical and modular fashion in which the ND4 module remains stable and bound to TMEM126A. We, thus, uncover the function of TMEM126A, the product of a disease gene causing recessive optic atrophy as a factor necessary for the correct assembly and function of CI.


Assuntos
Complexo I de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , NADH Desidrogenase/genética , Atrofia Óptica/genética , Animais , Sítios de Ligação , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/deficiência , Edição de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Modelos Moleculares , NADH Desidrogenase/deficiência , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Ligação Proteica , Conformação Proteica , Proteômica
4.
J Exp Clin Cancer Res ; 39(1): 38, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085796

RESUMO

BACKGROUND: New therapies are urgently needed in melanoma particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. METHODS: Drug screening, IC50 determinations as well as synergy assays were detected by the MTT assay. Apoptosis using Annexin V and 7AAD staining was assessed using flow cytometry. TUNEL staining was performed using immunocytochemistry. Changes in phosphorylation of key molecules in PI3K/Akt/mTOR and other relevant pathways were detected by western blot as well as immunocytochemistry. To assess in vivo anti-tumor activity of Tegaserod, syngeneic intravenous and subcutaneous melanoma xenografts were used. Immunocytochemical staining was performed to detect expression of active Caspase-3, cleaved Caspase 8 and p-S6 in tumors. Evaluation of immune infiltrates was carried out by flow cytometry. RESULTS: Using a screen of 770 pharmacologically active and/or FDA approved drugs, we identified Tegaserod (Zelnorm, Zelmac) as a compound with novel anti-cancer activity which induced apoptosis in murine and human malignant melanoma cell lines. Tegaserod (TM) is a serotonin receptor 4 agonist (HTR4) used in the treatment of irritable bowel syndrome (IBS). TM's anti-melanoma apoptosis-inducing effects were uncoupled from serotonin signaling and attributed to PI3K/Akt/mTOR signaling inhibition. Specifically, TM blunted S6 phosphorylation in both BRAFV600E and BRAF wildtype (WT) melanoma cell lines. TM decreased tumor growth and metastases as well as increased survival in an in vivo syngeneic immune-competent model. In vivo, TM also caused tumor cell apoptosis, blunted PI3K/Akt/mTOR signaling and decreased S6 phosphorylation. Furthermore TM decreased the infiltration of immune suppressive regulatory CD4+CD25+ T cells and FOXP3 and ROR-γt positive CD4+ T cells. Importantly, TM synergized with Vemurafenib, the standard of care drug used in patients with late stage disease harboring the BRAFV600E mutation and could be additively or synergistically combined with Cobimetinib in both BRAFV600E and BRAF WT melanoma cell lines in inducing anti-cancer effects. CONCLUSION: Taken together, we have identified a drug with anti-melanoma activity in vitro and in vivo that has the potential to be combined with the standard of care agent Vemurafenib and Cobimetinib in both BRAFV600E and BRAF WT melanoma.


Assuntos
Antineoplásicos/administração & dosagem , Indóis/administração & dosagem , Melanoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Vemurafenib/administração & dosagem , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Indóis/farmacologia , Concentração Inibidora 50 , Melanoma/genética , Melanoma/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Vemurafenib/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Semin Cell Dev Biol ; 98: 90-97, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31091466

RESUMO

The efficacy of metformin in treating cancer has been extensively investigated since epidemiologic studies associated this anti-diabetic drug with a lower risk of cancer incidence. Since tumors are complex systems, in which cancer cells coexist and interact with several different types of non-malignant cells, it is not surprising that anti-cancer drugs affect not only cancer cells, but also the abundance and functions of cells of the tumor microenvironment. Recent years have seen a wide collection of reports showing how metformin, as well as other complex I inhibitors, may influence cancer progression by modulating the phenotype of non-transformed cells in a tumor. In this review, we particularly focus on the effect of metformin on angiogenesis, cancer-associated fibroblasts, tumor-associated macrophages and cancer immunosuppression.


Assuntos
Antineoplásicos/farmacologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia
6.
J Clin Med ; 8(12)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835761

RESUMO

A cogent issue in cancer research is how to account for the effects of tumor microenvironment (TME) on the response to therapy, warranting the need to adopt adequate in vitro and in vivo models. This is particularly relevant in the development of strategies targeting cancer metabolism, as they will inevitably have systemic effects. For example, inhibition of mitochondrial complex I (CI), despite showing promising results as an anticancer approach, triggers TME-mediated survival mechanisms in subcutaneous osteosarcoma xenografts, a response that may vary according to whether the tumors are induced via subcutaneous injection or by intrabone orthotopic transplantation. Thus, with the aim to characterize the TME of CI-deficient tumors in a model that more faithfully represents osteosarcoma development, we set up a humanized bone niche ectopic graft. A prominent involvement of TME was revealed in CI-deficient tumors, characterized by the abundance of cancer associated fibroblasts, tumor associated macrophages and preservation of osteocytes and osteoblasts in the mineralized bone matrix. The pseudo-orthotopic approach allowed investigation of osteosarcoma progression in a bone-like microenvironment setting, without being invasive as the intrabone cell transplantation. Additionally, establishing osteosarcomas in a humanized bone niche model identified a peculiar association between targeting CI and bone tissue preservation.

7.
Nat Commun ; 10(1): 903, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796225

RESUMO

Converting carcinomas in benign oncocytomas has been suggested as a potential anti-cancer strategy. One of the oncocytoma hallmarks is the lack of respiratory complex I (CI). Here we use genetic ablation of this enzyme to induce indolence in two cancer types, and show this is reversed by allowing the stabilization of Hypoxia Inducible Factor-1 alpha (HIF-1α). We further show that on the long run CI-deficient tumors re-adapt to their inability to respond to hypoxia, concordantly with the persistence of human oncocytomas. We demonstrate that CI-deficient tumors survive and carry out angiogenesis, despite their inability to stabilize HIF-1α. Such adaptive response is mediated by tumor associated macrophages, whose blockage improves the effect of CI ablation. Additionally, the simultaneous pharmacological inhibition of CI function through metformin and macrophage infiltration through PLX-3397 impairs tumor growth in vivo in a synergistic manner, setting the basis for an efficient combinatorial adjuvant therapy in clinical trials.


Assuntos
Adenoma Oxífilo/tratamento farmacológico , Adenoma Oxífilo/genética , Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metformina/farmacologia , Pirróis/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Drosophila , Feminino , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Camundongos Nus , NADH Desidrogenase/genética , Neovascularização Patológica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA