Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Regen Ther ; 21: 62-72, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35765545

RESUMO

Introduction: Previously, we performed gene knockout (KO) of interleukin-2 receptor gamma (IL2RG) in porcine fetal fibroblasts using zinc finger nuclease-encoding mRNAs, subsequently generating IL2RG KO pigs using these cells through somatic cell nuclear transfer. The IL2RG KO pigs lacked a thymus and were deficient in T lymphocytes and natural killer cells, similar to human X-linked severe combined immunodeficiency (SCID) patients. The present study aimed to evaluate whether pigs can support the growth of xenografted human cells and have the potential to be an effective animal model. Methods: The IL2RG XKOY pigs used in this study were obtained by mating IL2RG XKOX females with wild-type boars. This permitted the routine production of IL2RG KO pigs via natural breeding without complicated somatic cell cloning procedures; therefore, a sufficient number of pigs could be prepared. We transplanted human HeLa S3 cells expressing the tandem dimer tomato into the ears and pancreas of IL2RG KO pigs. Additionally, a newly developed method for the aseptic rearing of SCID pigs was used in case of necessity. Results: Tumors from the transplanted cells quickly developed in all pigs and were verified by histology and immunohistochemistry. We also transplanted these cells into the pancreas of designated pathogen-free pigs housed in novel biocontainment facilities, and large tumors were confirmed. Conclusions: IL2RG KO pigs have the potential to become useful animal models in a variety of translational biology fields.

2.
Lab Invest ; 102(5): 560-569, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34980882

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, manifesting as the progressive development of fluid-filled renal cysts. In approximately half of all patients with ADPKD, end-stage renal disease results in decreased renal function. In this study, we used CRISPR-Cas9 and somatic cell cloning to produce pigs with the unique mutation c.152_153insG (PKD1insG/+). Pathological analysis of founder cloned animals and progeny revealed that PKD1insG/+ pigs developed many pathological conditions similar to those of patients with heterozygous mutations in PKD1. Pathological similarities included the formation of macroscopic renal cysts at the neonatal stage, number and cystogenic dynamics of the renal cysts formed, interstitial fibrosis of the renal tissue, and presence of a premature asymptomatic stage. Our findings demonstrate that PKD1insG/+ pigs recapitulate the characteristic symptoms of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Animais , Feminino , Heterozigoto , Humanos , Rim/patologia , Masculino , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Suínos , Canais de Cátion TRPP/genética
3.
Circulation ; 141(2): 132-146, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31928435

RESUMO

BACKGROUND: Myxomatous valve degeneration (MVD) involves the progressive thickening and degeneration of the heart valves, leading to valve prolapse, regurgitant blood flow, and impaired cardiac function. Leukocytes composed primarily of macrophages have recently been detected in myxomatous valves, but the timing of the presence and the contributions of these cells in MVD progression are not known. METHODS: We examined MVD progression, macrophages, and the valve microenvironment in the context of Marfan syndrome (MFS) using mitral valves from MFS mice (Fbn1C1039G/+), gene-edited MFS pigs (FBN1Glu433AsnfsX98/+), and patients with MFS. Additional histological and transcriptomic evaluation was performed by using nonsyndromic human and canine myxomatous valves, respectively. Macrophage ontogeny was determined using MFS mice transplanted with mTomato+ bone marrow or MFS mice harboring RFP (red fluorescent protein)-tagged C-C chemokine receptor type 2 (CCR2) monocytes. Mice deficient in recruited macrophages (Fbn1C1039G/+;Ccr2RFP/RFP) were generated to determine the requirements of recruited macrophages to MVD progression. RESULTS: MFS mice recapitulated histopathological features of myxomatous valve disease by 2 months of age, including mitral valve thickening, increased leaflet cellularity, and extracellular matrix abnormalities characterized by proteoglycan accumulation and collagen fragmentation. Diseased mitral valves of MFS mice concurrently exhibited a marked increase of infiltrating (MHCII+, CCR2+) and resident macrophages (CD206+, CCR2-), along with increased chemokine activity and inflammatory extracellular matrix modification. Likewise, mitral valve specimens obtained from gene-edited MFS pigs and human patients with MFS exhibited increased monocytes and macrophages (CD14+, CD64+, CD68+, CD163+) detected by immunofluorescence. In addition, comparative transcriptomic evaluation of both genetic (MFS mice) and acquired forms of MVD (humans and dogs) unveiled a shared upregulated inflammatory response in diseased valves. Remarkably, the deficiency of monocytes was protective against MVD progression, resulting in a significant reduction of MHCII macrophages, minimal leaflet thickening, and preserved mitral valve integrity. CONCLUSIONS: All together, our results suggest sterile inflammation as a novel paradigm to disease progression, and we identify, for the first time, monocytes as a viable candidate for targeted therapy in MVD.


Assuntos
Doenças das Valvas Cardíacas/patologia , Síndrome de Marfan/patologia , Monócitos/metabolismo , Animais , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Cães , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Síndrome de Marfan/complicações , Síndrome de Marfan/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Valva Mitral/metabolismo , Valva Mitral/fisiopatologia , Monócitos/citologia , Suínos
4.
Sci Rep ; 9(1): 8016, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142767

RESUMO

To combat organ shortage in transplantation medicine, a novel strategy has been proposed to generate human organs from exogenous pluripotent stem cells utilizing the developmental mechanisms of pig embryos/foetuses. Genetically modified pigs missing specific organs are key elements in this strategy. In this study, we demonstrate the feasibility of using a genome-editing approach to generate anephrogenic foetuses in a genetically engineered pig model. SALL1 knockout (KO) was successfully induced by injecting genome-editing molecules into the cytoplasm of pig zygotes, which generated the anephrogenic phenotype. Extinguished SALL1 expression and marked dysgenesis of nephron structures were observed in the rudimentary kidney tissue of SALL1-KO foetuses. Biallelic KO mutations of the target gene induced nephrogenic defects; however, biallelic mutations involving small in-frame deletions did not induce the anephrogenic phenotype. Through production of F1 progeny from mutant founder pigs, we identified mutations that could reliably induce the anephrogenic phenotype and hence established a line of fertile SALL1-mutant pigs. Our study lays important technical groundwork for the realization of human kidney regeneration through the use of an empty developmental niche in pig foetuses.


Assuntos
Animais Geneticamente Modificados , Edição de Genes/métodos , Néfrons/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Fatores de Transcrição/genética , Aloenxertos/provisão & distribuição , Animais , Sistemas CRISPR-Cas/genética , Estudos de Viabilidade , Feminino , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Humanos , Transplante de Rim , Masculino , Mutação , Células-Tronco Pluripotentes/fisiologia , Regeneração/fisiologia , Sus scrofa , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Zigoto/crescimento & desenvolvimento
5.
Am J Sports Med ; 44(9): 2375-83, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27329998

RESUMO

BACKGROUND: Distinguishing recipient cells from donor ligament cells is difficult in the early graft-healing phase after anterior cruciate ligament (ACL) reconstruction. The ability to track the distribution and differentiation of recipient cells using genetically engineered transgenic (Tg) animals would have significant clinical and research effects on graft healing after ACL reconstruction. HYPOTHESIS: Kusabira-Orange Tg pigs may allow the tracking of recipient cells infiltrating the graft after ACL reconstruction. The repopulation of recipient cells within the graft would be apparent even in the early graft-healing phase when necrotic donor cells are still present. STUDY DESIGN: Descriptive laboratory study. METHODS: In 17 genetically engineered Tg pigs, which carried the red fluorescent protein Kusabira-Orange, ACL reconstruction was performed on the right knee using a digital flexor tendon harvested from wild-type pigs. Tissue samples harvested at different time points were subjected to histological, immunohistochemical, and electron microscopic analyses. RESULTS: At 3 weeks postoperatively, recipient cells expressing red fluorescence embraced the graft and were infiltrating the central part of the graft. These cells with oval nuclei gradually infiltrated the gap of collagen fibers, losing their regular orientation. At 6 weeks, cellularity within the graft had doubled to match that of the native ACL, while acellular necrotic regions still existed centrally. Ubiquitous cellular distributions resembling the native ACL were observed at 24 weeks. Electron microscopic analysis showed that the mean collagen fibril diameter and density gradually decreased over 24 weeks. CONCLUSION: Genetically engineered pigs carrying the Kusabira-Orange gene were useful animal models for analyzing intrinsic and extrinsic cellular dynamics during the course of graft healing after ACL reconstruction. Cellular repopulation by recipient cells occurred in the very early stage, and the cellular distribution within the graft resembled that in the native ACL by 24 weeks, but the reconstructed graft had not restored the ultrastructure of the native ACL by that stage. CLINICAL RELEVANCE: In allograft ACL reconstruction in a pig model, cellular repopulation was completed by 24 weeks after surgery, but the collagen matrix had not resumed the ultrastructure of the native ACL. Surgeons should be aware that risks may remain with returning to sports activities at 24 weeks after surgery.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Proliferação de Células , Colágeno/metabolismo , Tendões/transplante , Transplante Homólogo , Aloenxertos/transplante , Animais , Animais Geneticamente Modificados , Comunicação Celular , Matriz Extracelular/metabolismo , Modelos Animais , Sus scrofa
6.
Stem Cells Dev ; 22(3): 473-82, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22889279

RESUMO

In pluripotent stem cells (PSCs), there are 2 types: naive and primed. Only the naive type has the capacity for producing chimeric offspring. Mouse PSCs are naive, but human PSCs are in the primed state. Previously reported porcine PSCs appear in the primed state. In this study, putative naive porcine-induced pluripotent stem cells (iPSCs) were generated. Porcine embryonic fibroblasts were transduced with retroviral vectors expressing Yamanaka's 4 genes. Emergent colonies were propagated in the presence of porcine leukemia inhibitory factor (pLIF) and forskolin. The cells expressed pluripotency markers and formed embryoid bodies, which gave rise to cell types from all 3 embryonic germ layers. The naive state of the cells was demonstrated by pLIF dependency, 2 active X chromosomes (when female), absent MHC class I expression, and characteristic gene expression profiles. The porcine iPSCs contributed to the in vitro embryonic development (11/24, 45.8%) as assessed by fluorescent markers. They also contributed to the in utero fetal development (11/71, 15.5% at day 23; 1/13, 7.7% at day 65). This is the first demonstration of macroscopic fluorescent chimeras derived from naive-like porcine PSCs, although adult chimeras remain to be produced.


Assuntos
Massa Celular Interna do Blastocisto/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Quimera , Metilação de DNA , Corpos Embrioides/metabolismo , Desenvolvimento Embrionário , Feminino , Desenvolvimento Fetal , Células-Tronco Pluripotentes Induzidas/transplante , Mórula/citologia , Fator 3 de Transcrição de Octâmero/genética , Gravidez , Regiões Promotoras Genéticas , Sus scrofa , Transdução Genética , Transgenes , Cromossomo X/genética
7.
Hepatology ; 38(1): 104-13, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829992

RESUMO

Tissue damage can be assessed based on regenerative responses, including progenitor cell proliferation. In the salivary gland, tissue damage induced by ligation of main ducts leads to the disappearance of acinar cells and to marked proliferation of ductal cells. Reopening of the ducts leads to repopulation of acinar cells within 1 to 2 weeks, which suggests activation of tissue progenitor cells in a damaged state. Because submandibular glands derive from the endoderm and ectoderm, we investigated the possibility of the presence of endodermal progenitor cells. We cultured cells obtained from the ligated salivary gland and identified colonies of epithelium-like cells. We singled out and purified the cells by limited dilution, and one of the cells designated SGP-1 was used for further experiments. The SGP-1 expresses both alpha6beta1 integrin and cytoplasmic laminin. The hematopoietic stem cell marker CD34 and hepatic oval cell markers such as albumin, alpha-fetoprotein (AFP), and cytokeratin 19 are all negative. However, when SGP-1 cells were transplanted into the liver via the portal vein, these cells were integrated into hepatic trabecula and produced albumin. When SGP-1 cells formed clusters on type I collagen-coated dishes, they differentiated into endodermal lineage and 2 major types of clusters appeared: one contained cells positive for AFP and/or albumin (hepatic cluster) and the other positive for glucagon and/or insulin (pancreatic cluster). On laminin-coated dishes, SGP-1 selectively differentiated into hepatic-type cells. In conclusion, the multipotent progenitor cells isolated from the rat salivary gland have characteristics of tissue stem cells and can differentiate into cells of endodermal lineages.


Assuntos
Hepatócitos/citologia , Pâncreas/citologia , Células-Tronco/citologia , Glândula Submandibular/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Separação Celular , Células Cultivadas , Endoderma/citologia , Ligadura , Ratos , Ratos Endogâmicos LEC , Ratos Sprague-Dawley , Ductos Salivares , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA