Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 21(5): 100229, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378291

RESUMO

Early diabetes research is hampered by limited availability, variable quality, and instability of human pancreatic islets in culture. Little is known about the human ß cell secretome, and recent studies question translatability of rodent ß cell secretory profiles. Here, we verify representativeness of EndoC-ßH1, one of the most widely used human ß cell lines, as a translational human ß cell model based on omics and characterize the EndoC-ßH1 secretome. We profiled EndoC-ßH1 cells using RNA-seq, data-independent acquisition, and tandem mass tag proteomics of cell lysate. Omics profiles of EndoC-ßH1 cells were compared to human ß cells and insulinomas. Secretome composition was assessed by data-independent acquisition proteomics. Agreement between EndoC-ßH1 cells and primary adult human ß cells was ∼90% for global omics profiles as well as for ß cell markers, transcription factors, and enzymes. Discrepancies in expression were due to elevated proliferation rate of EndoC-ßH1 cells compared to adult ß cells. Consistently, similarity was slightly higher with benign nonmetastatic insulinomas. EndoC-ßH1 secreted 783 proteins in untreated baseline state and 3135 proteins when stressed with nontargeting control siRNA, including known ß cell hormones INS, IAPP, and IGF2. Further, EndoC-ßH1 secreted proteins known to generate bioactive peptides such as granins and enzymes required for production of bioactive peptides. EndoC-ßH1 secretome contained an unexpectedly high proportion of predicted extracellular vesicle proteins. We believe that secretion of extracellular vesicles and bioactive peptides warrant further investigation with specialized proteomics workflows in future studies.


Assuntos
Células Secretoras de Insulina , Insulinoma , Neoplasias Pancreáticas , Linhagem Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteoma/metabolismo , Secretoma , Transcriptoma
2.
Mol Cell ; 80(3): 485-500.e7, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027691

RESUMO

Peptide drugs targeting class B1 G-protein-coupled receptors (GPCRs) can treat multiple diseases; however, there remains substantial interest in the development of orally delivered non-peptide drugs. Here, we reveal unexpected overlap between signaling and regulation of the glucagon-like peptide-1 (GLP-1) receptor by the non-peptide agonist PF 06882961 and GLP-1 that was not observed for another compound, CHU-128. Compounds from these patent series, including PF 06882961, are currently in clinical trials for treatment of type 2 diabetes. High-resolution cryoelectron microscopy (cryo-EM) structures reveal that the binding sites for PF 06882961 and GLP-1 substantially overlap, whereas CHU-128 adopts a unique binding mode with a more open receptor conformation at the extracellular face. Structural differences involving extensive water-mediated hydrogen bond networks could be correlated to functional data to understand how PF 06882961, but not CHU-128, can closely mimic the pharmacological properties of GLP-1. These findings will facilitate rational structure-based discovery of non-peptide agonists targeting class B GPCRs.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Animais , Sítios de Ligação/fisiologia , Microscopia Crioeletrônica/métodos , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Humanos , Peptídeos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
3.
Mol Cell Endocrinol ; 382(2): 938-49, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24275181

RESUMO

The glucagon-like peptide-1 incretin receptor (GLP-1R) of family B G protein-coupled receptors (GPCRs) is a major drug target in type-2-diabetes due to its regulatory effect on post-prandial blood-glucose levels. The mechanism(s) controlling GLP-1R mediated signaling are far from fully understood. A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R internalizes rapidly and with similar kinetics in response to equipotent concentrations of GLP-1 and the stable GLP-1 analogues exendin-4 and liraglutide. Receptor internalization was confirmed in mouse pancreatic islets. GLP-1R is shown to be a recycling receptor with faster recycling rates mediated by GLP-1 as compared to exendin-4 and liraglutide. Furthermore, a prolonged cycling of ligand-activated GLP-1Rs was observed and is suggested to be correlated with a prolonged cAMP signal.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/farmacologia , Ilhotas Pancreáticas/metabolismo , Receptores de Glucagon/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Exenatida , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células HEK293 , Humanos , Incretinas/metabolismo , Incretinas/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/ultraestrutura , Liraglutida , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Peptídeos/farmacologia , Estabilidade Proteica , Transporte Proteico , Proteólise , Imagem com Lapso de Tempo , Peçonhas/metabolismo , Peçonhas/farmacologia
4.
Peptides ; 49: 100-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24045233

RESUMO

The glucagon-like peptide-1 receptor (GLP-1R) belongs to family B of the G-protein coupled receptors (GPCRs), and has become a promising target for the treatment of type 2 diabetes. Here we describe the development and characterization of a fully functional cysteine-deprived and C-terminally truncated GLP-1R. Single cysteines were initially substituted with alanine, and functionally redundant cysteines were subsequently changed simultaneously. Our results indicate that Cys(174), Cys(226), Cys(296) and Cys(403) are important for the GLP-1-mediated response, whereas Cys(236), Cys(329), Cys(341), Cys(347), Cys(438), Cys(458) and Cys(462) are not. Extensive deletions were made in the C-terminal tail of GLP-1R in order to determine the limit for truncation. As for other family B GPCRs, we observed a direct correlation between the length of the C-terminal tail and specific binding of (125)I-GLP-1, indicating that the membrane proximal part of the C-terminal is involved in receptor expression at the cell surface. The results show that seven cysteines and more than half of the C-terminal tail can be removed from GLP-1R without compromising GLP-1 binding or function.


Assuntos
Cisteína/química , Receptores de Glucagon/química , Sequência de Aminoácidos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células HEK293 , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
5.
Vitam Horm ; 84: 251-78, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21094903

RESUMO

The glucose-dependent insulinotropic polypeptide (GIP) receptor and the glucagon-like peptide-1 (GLP-1) receptor are homologous G-protein-coupled receptors (GPCRs). Incretin receptor agonists stimulate the synthesis and secretion of insulin from pancreatic ß-cells and are therefore promising agents for the treatment of type 2 diabetes. It is well established that the N-terminal extracellular domain (ECD) of incretin receptors is important for ligand binding and ligand specificity, whereas the transmembrane domain is involved in receptor activation. Structures of the ligand-bound ECD of incretin receptors have been solved recently by X-ray crystallography. The crystal structures reveal a similar fold of the ECD and a similar mechanism of ligand binding, where the ligand adopts an α-helical conformation. Residues in the C-terminal part of the ligand interact directly with the ECD and hydrophobic interactions appear to be the main driving force for ligand binding to the ECD of incretin receptors. Obviously, the-still missing-structures of full-length incretin receptors are required to construct a complete picture of receptor function at the molecular level. However, the progress made recently in structural analysis of the ECDs of incretin receptors and related GPCRs has shed new light on the process of ligand recognition and binding and provided a basis to disclose some of the mechanisms underlying receptor activation at high resolution.


Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Glucagon/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Polipeptídeo Inibidor Gástrico/química , Peptídeo 1 Semelhante ao Glucagon/química , Receptor do Peptídeo Semelhante ao Glucagon 1 , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Receptores dos Hormônios Gastrointestinais/química , Receptores de Glucagon/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA