Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(20): 10033-10044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34121619

RESUMO

Sirtuin-6 (SIRT6), class III family of deacetylase regulates several biological functions, including transcriptional repression, telomere maintenance, and DNA repair. It is unique among sirtuin family members with diverse enzymatic functions: mono-ADP-ribosylase, deacetylase and defatty-acylase. The studies so far implicated SIRT6 role in lifespan extension, tumor suppression, and is considered as an attractive drug target for aging-related disease. In this study, we have carried out in silico screening for human SIRT6 modulators using NCI Diversity Set III library, molecular dynamic (MD) simulations to analyze the protein-ligand interaction, and validated their binding-affinity (Kd) using MicroScale Thermophoresis. This study yielded two novel compounds, ((3Z)-3-((4-(dimethylamino)phenyl)methylidene)-5-(5,6,7,8-tetrahydronaphthalen-2-yl)furan-2-one and 5-phenyl-2-(5-phenyl-2,3-dihydro-1,3-benzoxazol-2-yl)-2,3-dihydro-1,3-benzoxazole showing high-affinity interaction for SIRT6. The structural analysis from MD simulation suggests both compounds might act as substrate-analogs or mimic the nicotinamide binding. On considering the uniqueness of SIRT6 substrate binding acyl channel among sirtuin family member, binding of both compounds to the above site suggesting their specificity for SIRT6 isoform. Therefore, it may form the basis for the development of potential modulators for human SIRT6.Communicated by Ramaswamy H. Sarma.


Assuntos
Sirtuínas , Humanos , Sirtuínas/química , Ligantes , Reparo do DNA
2.
J Mol Neurosci ; 71(11): 2324-2335, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33515430

RESUMO

FHL1-related myopathies are rare X-linked dominant myopathies. Though clinically classified into several subgroups, spinal and scapuloperoneal muscle involvement are common to all. In this study, we identified c.449G > A, p.C150Y mutation by clinical exome sequencing in two patients from same family (son and mother) of Indian origin who presented with multiple contractures. Muscle biopsy showed numerous intracytoplasmic aggregates intensely stained on HE and MGT. The strong reactions to M-NBT revealed aggregates to be reducing bodies and positively labeled to anti-FHL1 antibody. Ultrastructurally, Z-band streaming and granular and granulofilamentous material were seen. Further, the translational evidence of mutant peptide was confirmed using mass spectrometric analysis. To establish p.C150Y as the cause for protein aggregation, in vivo studies were carried out using transgenic Drosophila model which highlighted Z-band abnormalities and protein aggregates in indirect flight muscles with compromised physiological function. Thus, recapitulating the X-linked human disease phenotype. Additionally, the molecular dynamics simulation analysis unraveled the drastic change in α-helix of LIM2, the region immediately next to site of C150Y mutation that could be the plausible cause for protein aggregation. To the best of our knowledge, this is the first study of p.C150Y mutation in FHL1 identified in Indian patients with in vivo and in silico analysis to establish the cause for protein aggregation in muscle.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Doenças Musculares/congênito , Mutação de Sentido Incorreto , Multimerização Proteica , Adulto , Animais , Criança , Drosophila melanogaster , Feminino , Genes Dominantes , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/metabolismo , Masculino , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Conformação Proteica em alfa-Hélice , Domínios Proteicos
3.
FEBS J ; 288(5): 1599-1613, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32672401

RESUMO

The activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription function has been implicated in the protection of neurodegenerative diseases. The cytoplasmic protein, Kelch-like ECH-associated protein 1 (Keap1), negatively regulates Nrf2. The Keap1-Nrf2 pathway is a potential therapeutic target for tackling free-radical damage. Dimethyl fumarate (DMF) is currently an approved drug for the treatment of relapsing multiple sclerosis. Recent studies showed that DMF modifies the reactive cysteines in the BTB domain of Keap1 and thus activates Nrf2 transcription function. Intriguingly, our crystal structure studies revealed that DMF also binds to the ß-propeller domain (Keap1-DC) of Keap1. The crystal structure of the complex, refined to 1.54 Å resolution, revealed unexpected features: DMF binds (a) to the Nrf2-binding site (bottom region of Keap1-DC, site 1) with moderate interaction, and (b) to the top region of Keap1-DC, near to the blade II (site 2). The specificity of the binding 'site 2' was found to be unique to blade II of the ß-propeller domain. The newly identified 'site 2' region in Keap1-DC may have a different functional role to regulate Nrf2. Moreover, the crystal structures of Keap1-DC in complex with the DMF analogs, including monoethyl fumarate, fumarate, and itaconate, also exhibited similar binding modes with Keap1-DC. Binding studies confirmed that DMF binds, in a nanomolar range, to the Keap1-DC region as well as the BTB domain of Keap1. Furthermore, the competitive binding assay in the presence of the Nrf2 peptide affirmed the direct binding of DMF at the Nrf2-binding region of Keap1-DC. Overall, our studies suggest that the drug molecule, DMF, binds at multiple sites of Keap1 and thus potentially activates Nrf2 function through covalent as well as the noncovalent mode of action, to combat oxidative stress. DATABASE: Structural data are available in RCSB-protein data bank database(s) under the accession numbers 6LRZ, 7C60, and 7C5E.


Assuntos
Fumarato de Dimetilo/química , Fumaratos/química , Proteína 1 Associada a ECH Semelhante a Kelch/química , Fator 2 Relacionado a NF-E2/química , Sequência de Aminoácidos , Elementos de Resposta Antioxidante , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Fumarato de Dimetilo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fumaratos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Modelos Moleculares , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
4.
Bioorg Chem ; 92: 103281, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31561106

RESUMO

Sirtuins (SIRTs), class III HDAC (Histone deacetylase) family proteins, are associated with cancer, diabetes, and other age-related disorders. SIRT1 and SIRT2 are established therapeutic drug targets by regulating its function either by activators or inhibitors. Compounds containing indole moiety are potential lead molecules inhibiting SIRT1 and SIRT2 activity. In the current study, we have successfully synthesized 22 indole derivatives in association with an additional triazole moiety that provide better anchoring of the ligands in the binding cavity of SIRT1 and SIRT2. In-vitro binding and deacetylation assays were carried out to characterize their inhibitory effects against SIRT1 and SIRT2. We found four derivatives, 6l, 6m, 6n, and 6o to be specific for SIRT1 inhibition; three derivatives, 6a, 6d and 6k, specific for SIRT2 inhibition; and two derivatives, 6s and 6t, which inhibit both SIRT1 and SIRT2. In-silico validation for the selected compounds was carried out to study the nature of binding of the ligands with the neighboring residues in the binding site of SIRT1. These derivatives open up newer avenues to explore specific inhibitors of SIRT1 and SIRT2 with therapeutic implications for human diseases.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Indóis/farmacologia , Simulação de Acoplamento Molecular , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
5.
J Biomol Struct Dyn ; 37(15): 3936-3946, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30286701

RESUMO

Formation of Cu, Zn superoxide dismutase 1 (SOD1) protein inclusions within motor neurons is one of the principal characteristics of SOD1-related amyotrophic lateral sclerosis (ALS). A hypothesis as to the nature of SOD1 aggregation implicates oxidative damage to a solvent-exposed tryptophan as causative. Here, we chart the discovery of a phenanthridinone based compound (Lig9) from the NCI Diversity Set III by rational methods by in silico screening and crystallographic validation. The crystal structure of the complex with SOD1, refined to 2.5 Å, revealed that Lig9 binds the SOD1 ß-barrel in the ß-strand 2 and 3 region which is known to scaffold SOD1 fibrillation. The phenanthridinone moiety makes a substantial π-π interaction with Trp32 of SOD1. The compound possesses a significant binding affinity for SOD1 and inhibits oxidation of Trp32; a critical residue for SOD1 aggregation. Thus, Lig9 is a good candidate from which to develop a new library of SOD1 aggregation inhibitors through protection of Trp32 oxidation. Communicated by Ramaswamy H. Sarma.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Descoberta de Drogas , Modelos Moleculares , Oxirredução/efeitos dos fármacos , Superóxido Dismutase-1/antagonistas & inibidores , Triptofano/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/patologia , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
Biophys Rev ; 9(1): 41-56, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28510041

RESUMO

The overproduction of reactive oxygen species (ROS) generates oxidative stress in cells. Oxidative stress results in various pathophysiological conditions, especially cancers and neurodegenerative diseases (NDD). The Keap1-Nrf2 [Kelch-like ECH-associated protein 1-nuclear factor (erythroid-derived 2)-like 2] regulatory pathway plays a central role in protecting cells against oxidative and xenobiotic stresses. The Nrf2 transcription factor activates the transcription of several cytoprotective genes that have been implicated in protection from cancer and NDD. The Keap1-Nrf2 system acts as a double-edged sword: Nrf2 activity protects cells and makes the cell resistant to oxidative and electrophilic stresses, whereas elevated Nrf2 activity helps in cancer cell survival and proliferation. Several groups in the recent past, from both academics and industry, have reported the potential role of Nrf2-mediated transcription to protect from cancer and NDD, resulting from mechanisms involving xenobiotic and oxidative stress. It suggests that the Keap1-Nrf2 system is a potential therapeutic target to combat cancer and NDD by designing and developing modulators (inhibitors/activators) for Nrf2 activation. Herein, we review and discuss the recent advancement in the regulation of the Keap1-Nrf2 system, its role under physiological and pathophysiological conditions including cancer and NDD, and modulators design strategies for Nrf2 activation.

7.
Med Chem ; 12(4): 347-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26740209

RESUMO

BACKGROUND: Human SIRT1 is a class III histone deacetylase (HDAC) family protein. As the overexpression of hSIRT1 leads to cancer, inhibiting its HDAC function may be a better strategy for the treatment of cancer. Till now, only a few reported inhibitor compounds have reached the stage of animal studies; hence, identifying high efficacy inhibitors of hSIRT1 is essential. OBJECTIVE: The main objective of the study is to obtain a new class of inhibitor compounds of hSIRT1 by the rational structure-based method. METHODOLOGY: We performed virtual screening using AutoDock Vina for the HDAC domain of hSIRT1 against the Drug- Bank library containing 1,716 compounds. The recently determined crystal structure of the HDAC domain of hSIRT1 (PDB Id: 4KXQ) was used for docking studies. Subsequently, we performed molecular dynamics simulations and an invitro deacetylase assay for selected compounds. RESULTS: Virtual screening studies yielded seven compounds from two chemical classes, namely diphenyl and oxycoumarin derivatives. Molecular dynamic simulations confirmed that the predicted seven compounds bind well to their respective complex structures. Moreover, four commercially available drugs containing the predicted compounds showed significant inhibition of hSIRT1 deacetylase activity in comparison to the known hSIRT1 inhibitor (sirtinol). CONCLUSION: Our results indicate that the compounds of the diphenyl and oxycoumarin series may serve as useful scaffolds in the development of new chemical libraries of hSIRT1 inhibitory activity.


Assuntos
Compostos Benzidrílicos/química , Cromonas/química , Inibidores Enzimáticos/química , Sirtuína 1/antagonistas & inibidores , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sirtuína 1/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA