Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 3(2): 1245-1257, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019325

RESUMO

Metal nanoparticles-based sensors invoked much research attention in the biomedical field, especially in applications involving live cell imaging and monitoring. Here, a simple cost-effective method is adopted to synthesize glutathione coated copper nanoclusters (Cu-GSH NCs) with strong bright red fluorescence (625 nm). The clusters were found to be containing five Cu(0) atoms complexed with one molecule of glutathione (GSH) as evidenced by MALDI-TOF MS analysis. The synthesized Cu-GSH NCs system responds linearly to the pH in the acidic and alkaline ranges with a high degree of in vitro pH reversibility, projecting its potential as a real time pH sensor. Higher intensity emission observed in acidic conditions can be exploited for its employability as cellular organelle markers. The imaging and sensing potential of Cu-GSH NCs in the live human adenocarcinoma cell line, the HeLa cells, was tested. The treatment of HeLa cells for 48 h imparted deep red fluorescence, owing to the lower level of intracellular pH in cancer cells. In contrast, the imaging using normal cell lines (L-132, lung epithelial cell line) showed significantly lower fluorescence intensity as compared to that of HeLa cells. The subcellular pH-dependent fluorescence emission of Cu-GSH NCs was further assessed by treating HeLa cells with proton pump (V-ATPase) inhibitor Bafilomycin A1, which increases the vesicular pH. Interestingly, the fluorescent intensity of HeLa cells decreases with increasing concentration of Bafilomycin A1 in the presence of Cu-GSH NCs, as evidenced by the fluorescence microscopic images and quantitative fluorescent output. Accordingly, the developed Cu-GSH NCs system can be employed as an efficient pH-based bioimaging probe for the detection of cancer cells with an implied potential for the label free subcellular organelle tracking and marking. Importantly, the Cu-GSH NCs can be used for live cell pH imaging owing to their high degree of reversibility in sensing of pH variation.

2.
Microb Pathog ; 137: 103762, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31560972

RESUMO

Cellular autophagy (Macrophagy) is a self-degradative process, executed through the network of autophagy associated genes (ATGs) encoded proteins. Both in vitro and in vivo studies suggest that dengue virus (DENV) induces autophagy and supports the viral genome replication and translation. Therefore, the cellular autophagy induced by dengue virus can be a good target for antiviral drug development. The action of mycophenolic acid (MPA), a specific inhibitor of DENV replication, was investigated in the stable BHK-21/DENV2 replicon cells. The inhibition was mediated by enhanced degradation of autophagic substrates in stable BHK-21/DENV2 replicon cells as evidenced by a decrease in lapidated LC3 (LC3II) and p62 expression in the presence of MPA. In contrast, the results indicated that four gene sets, namely Transmembrane protein 74 (TMEM74), Unc-51-like kinase 2 (ULK2), Cathepsin D (CTSD) and Estrogen receptor 1 (ESR1) were upregulated in stable BHK-21/DENV2 replicon cells, due to the sustained dynamic replication of DENV2 genome. These ATGs involved in the pre-autophagosomal structure (PAS) formation, were suppressed in the presence MPA. Instead, MPA induced the expression of different set of autophagy genes such as ATG4, AKT1, APP, ATG16L1, ATG16L2, B2M and HPRT1. An enzyme involved in the nucleotide salvage pathway, HPRT1, was highly expressed in the presence of MPA. The study shows that DENV2 replication is dependent on PAS formation and is inhibited in the presence of MPA by enhancing the degradation of autophagic substrates and suppression of PAS formation. This study provides impetus in designing MPA analogues to effectively inhibit dengue viral replication.


Assuntos
Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Ácido Micofenólico/farmacologia , Replicon/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Catepsina D/metabolismo , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Dengue , Vírus da Dengue/genética , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Microglobulina beta-2/metabolismo
3.
BMC Plant Biol ; 15: 210, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26307100

RESUMO

BACKGROUND: Agrobacterium infection, which is widely used to generate transgenic plants, is often accompanied by T-DNA-linked mutations and transpositions in flowering plants. It is not known if Agrobacterium infection also affects the rates of point mutations, somatic homologous recombinations (SHR) and frame-shift mutations (FSM). We examined the effects of Agrobacterium infection on five types of somatic mutations using a set of mutation detector lines of Arabidopsis thaliana. To verify the effect of secreted factors, we exposed the plants to different Agrobacterium strains, including wild type (Ach5), its derivatives lacking vir genes, oncogenes or T-DNA, and the heat-killed form for 48 h post-infection; also, for a smaller set of strains, we examined the rates of three types of mutations at multiple time-points. The mutation detector lines carried a non-functional ß-glucuronidase gene (GUS) and a reversion of mutated GUS to its functional form resulted in blue spots. Based on the number of blue spots visible in plants grown for a further two weeks, we estimated the mutation frequencies. RESULTS: For plants co-cultivated for 48 h with Agrobacterium, if the strain contained vir genes, then the rates of transversions, SHRs and FSMs (measured 2 weeks later) were lower than those of uninfected controls. In contrast, co-cultivation for 48 h with any of the Agrobacterium strains raised the transposition rates above control levels. The multiple time-point study showed that in seedlings co-cultivated with wild type Ach5, the reduced rates of transversions and SHRs after 48 h co-cultivation represent an apparent suppression of an earlier short-lived increase in mutation rates (peaking for plants co-cultivated for 3 h). An increase after 3 h co-cultivation was also seen for rates of transversions (but not SHR) in seedlings exposed to the strain lacking vir genes, oncogenes and T-DNA. However, the mutation rates in plants co-cultivated for longer times with this strain subsequently dropped below levels seen in uninfected controls, consistent with the results of the single time-point study. CONCLUSIONS: The rates of various classes of mutations that result from Agrobacterium infection depend upon the duration of infection and the type of pathogen derived factors (such as Vir proteins, oncoproteins or T-DNA) possessed by the strain. Strains with vir genes, including the type used for plant transformation, suppressed selected classes of somatic mutations. Our study also provides evidence of a pathogen that can at least partly counter the induction of mutations in an infected plant.


Assuntos
Agrobacterium tumefaciens/genética , Arabidopsis/genética , Genes Bacterianos , Mutação/genética , Supressão Genética , Cromossomos de Plantas/genética , Escherichia coli/metabolismo , Mutação da Fase de Leitura , Recombinação Homóloga/genética , Plantas Geneticamente Modificadas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA