RESUMO
The DNA sensor cGAS (cyclic GMP-AMP synthase) and its adaptor protein STING (Stimulator of Interferon Genes) detect the presence of cytosolic DNA as a sign of infection or damage. In cancer cells, this pathway can be activated through persistent DNA damage and chromosomal instability, which results in the formation of micronuclei and the exposure of DNA fragments to the cytosol. DNA damage from radio- or chemotherapy can further activate DNA sensing responses, which may occur in the cancer cells themselves or in stromal and immune cells in the tumour microenvironment (TME). cGAS-STING signalling results in the production of type I interferons, which have been linked to immune cell infiltration in 'hot' tumours that are susceptible to immunosurveillance and immunotherapy approaches. However, recent research has highlighted the complex nature of STING signalling, with tumours having developed mechanisms to evade and hijack this signalling pathway for their own benefit. In this mini-review we will explore how cGAS-STING signalling in different cells in the TME can promote both anti-tumour and pro-tumour responses. This includes the role of type I interferons and the second messenger cGAMP in the TME, and the influence of STING signalling on local immune cell populations. We examine how alternative signalling cascades downstream of STING can promote chronic interferon signalling, the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the production of inflammatory cytokines, which can have pro-tumour functions. An in-depth understanding of DNA sensing in different cell contexts will be required to harness the anti-tumour functions of STING signalling.
Assuntos
Interferon Tipo I , Neoplasias , Humanos , Imunidade Inata/genética , DNA/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Neoplasias/terapia , Microambiente TumoralRESUMO
Self-DNA has previously been thought to be protected from immune detection by compartmentalisation in the nucleus or mitochondria. Here, we describe the discovery of a signalling cascade that links the detection of DNA damage in the nucleus to the activation of the innate immune adaptor STING (STimulator of INterfern Genes).
RESUMO
DNA damage can be sensed as a danger-associated molecular pattern by the innate immune system. Here we find that keratinocytes and other human cells mount an innate immune response within hours of etoposide-induced DNA damage, which involves the DNA sensing adaptor STING but is independent of the cytosolic DNA receptor cGAS. This non-canonical activation of STING is mediated by the DNA binding protein IFI16, together with the DNA damage response factors ATM and PARP-1, resulting in the assembly of an alternative STING signaling complex that includes the tumor suppressor p53 and the E3 ubiquitin ligase TRAF6. TRAF6 catalyzes the formation of K63-linked ubiquitin chains on STING, leading to the activation of the transcription factor NF-κB and the induction of an alternative STING-dependent gene expression program. We propose that STING acts as a signaling hub that coordinates a transcriptional response depending on its mode of activation.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Núcleo Celular/genética , Dano ao DNA/genética , Proteínas de Membrana/genética , NF-kappa B/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Transdução de Sinais/genética , Linhagem Celular , Citosol/metabolismo , DNA/genética , Células HEK293 , Humanos , Imunidade Inata/genética , Queratinócitos/fisiologia , Poli(ADP-Ribose) Polimerase-1/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.
Assuntos
DNA/metabolismo , Queratinócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Linhagem Celular , Vírus de DNA/metabolismo , Expressão Gênica , Humanos , Imunidade Inata , Interferon beta/genética , Interferon beta/metabolismo , Queratinócitos/imunologia , Mutação , Proteínas Nucleares/genética , Nucleotídeos Cíclicos/metabolismo , Fosfoproteínas/genética , Fosforilação , Transporte ProteicoRESUMO
The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA.
Assuntos
DNA/imunologia , Interferon Tipo I/imunologia , Receptores de Superfície Celular/imunologia , Animais , Autoimunidade/imunologia , Expressão Gênica/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamação/imunologia , Viroses/imunologiaRESUMO
The innate immune system is important for control of infections, including herpesvirus infections. Intracellular DNA potently stimulates antiviral IFN responses. It is known that plasmacytoid dendritic cells sense herpesvirus DNA in endosomes via TLR9 and that nonimmune tissue cells can sense herpesvirus DNA in the nucleus. However, it remains unknown how and where myeloid cells, such as macrophages and conventional dendritic cells, detect infections with herpesviruses. In this study, we demonstrate that the HSV-1 capsid was ubiquitinated in the cytosol and degraded by the proteasome, hence releasing genomic DNA into the cytoplasm for detection by DNA sensors. In this context, the DNA sensor IFN-γ-inducible 16 is important for induction of IFN-ß in human macrophages postinfection with HSV-1 and CMV. Viral DNA localized to the same cytoplasmic regions as did IFN-γ-inducible 16, with DNA sensing being independent of viral nuclear entry. Thus, proteasomal degradation of herpesvirus capsids releases DNA to the cytoplasm for recognition by DNA sensors.
Assuntos
Capsídeo/metabolismo , Citomegalovirus/metabolismo , DNA Viral/genética , Herpesvirus Humano 1/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citomegalovirus/genética , Citosol/metabolismo , DNA Viral/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Inativação Gênica , Herpesvirus Humano 1/genética , Humanos , Interferon beta/biossíntese , Interferon beta/imunologia , Macrófagos/virologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/imunologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/imunologia , RNA Interferente Pequeno/genética , Ubiquitinação , Células VeroRESUMO
Recognition of DNA by the innate immune system is central to antiviral and antibacterial defenses, as well as an important contributor to autoimmune diseases involving self DNA. AIM2 (absent in melanoma 2) and IFI16 (interferon-inducible protein 16) have been identified as DNA receptors that induce inflammasome formation and interferon production, respectively. Here we present the crystal structures of their HIN domains in complex with double-stranded (ds) DNA. Non-sequence-specific DNA recognition is accomplished through electrostatic attraction between the positively charged HIN domain residues and the dsDNA sugar-phosphate backbone. An intramolecular complex of the AIM2 Pyrin and HIN domains in an autoinhibited state is liberated by DNA binding, which may facilitate the assembly of inflammasomes along the DNA staircase. These findings provide mechanistic insights into dsDNA as the activation trigger and oligomerization platform for the assembly of large innate signaling complexes such as the inflammasomes.
Assuntos
DNA de Forma B/metabolismo , Proteínas de Ligação a DNA/química , Inflamassomos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Cristalografia por Raios X , DNA de Forma B/química , DNA de Forma B/imunologia , Humanos , Imunidade Inata , Inflamassomos/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Transdução de SinaisRESUMO
It has been assumed that cells distinguish viral from cellular DNA due to the former's presence in the cytosol. However, in this issue, Kerur et al. (2011) propose that the DNA genome of Kaposi's sarcoma-associated herpesvirus (KSHV) is recognized inside the nucleus by the DNA sensor IFI16, leading inflammasome activation.
RESUMO
The immediate response to viral infection relies on pattern-recognition receptors (PRRs), most prominently the Toll-like receptors (TLRs) and the RNA helicases RIG-I and MDA5, as well as double stranded RNA-dependent protein kinase (PKR) and the DNA receptor, DAI. These PRRs recognize pathogen-associated molecular patterns (PAMPs) such as viral proteins and nucleic acids. The engagement of these receptors then initiates intracellular signaling cascades which ultimately cause the activation of transcription factors and the expression of type I interferons and pro-inflammatory cytokines. This innate response establishes an anti-viral state in the infected cell and its neighbours and alerts immune cells to the danger. In order to establish a productive infection, viruses need to overcome this initial anti-viral response. Evasion of innate immune defences is achieved by means of viral proteins that inhibit the signaling cascades emanating from the PRRs. The same innate signal transduction pathways have been implicated in conditions of sterile inflammation, such as rheumatoid arthritis and multiple sclerosis, and in autoimmunity. Because viral proteins target crucial host proteins involved in these pathways, they can point the way to key drug targets. Further, the viral proteins themselves or derivatives of them may be of use therapeutically to curtail inflammation and autoimmunity.