Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 976932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238569

RESUMO

Mechanistic target of rapamycin (mTOR) C1 and its downstream effectors have been implicated in synaptic plasticity and memory. Our prior work demonstrated that reactivation of cocaine memory engages a signaling pathway consisting of Akt, glycogen synthase kinase-3ß (GSK3ß), and mTORC1. The present study sought to identify other components of mTORC1 signaling involved in the reconsolidation of cocaine contextual memory, including eukaryotic translation initiation factor 4E (eIF4E)-eIF4G interactions, p70 S6 kinase polypeptide 1 (p70S6K, S6K1) activity, and activity-regulated cytoskeleton (Arc) expression. Cocaine contextual memory was established in adult CD-1 mice using conditioned place preference. After cocaine place preference was established, mice were briefly re-exposed to the cocaine-paired context to reactivate the cocaine memory and brains examined. Western blot analysis showed that phosphorylation of the mTORC1 target, p70S6K, in nucleus accumbens and hippocampus was enhanced 60 min following reactivation of cocaine memories. Inhibition of mTORC1 with systemic administration of rapamycin or inhibition of p70S6K with systemic PF-4708671 after reactivation of cocaine contextual memory abolished the established cocaine place preference. Immunoprecipitation assays showed that reactivation of cocaine memory did not affect eIF4E-eIF4G interactions in nucleus accumbens or hippocampus. Levels of Arc mRNA were significantly elevated 60 and 120 min after cocaine memory reactivation and returned to baseline 24 h later. These findings demonstrate that mTORC1 and p70S6K are required for reconsolidation of cocaine contextual memory.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32601131

RESUMO

There are currently effective Food and Drug Administration (FDA)-approved therapies for alcohol, nicotine, and opioid use disorders. This article will review the development of eight compounds used in the treatment of drug addiction with an emphasis on pharmacological mechanisms and the utility of preclinical animal models of addiction in therapeutic development. In contrast to these successes, animal research has identified a number of promising medications for the treatment of psychostimulant use disorder, none of which have proven to be clinically effective. A specific example of an apparently promising pharmacotherapeutic for cocaine that failed clinically will be examined to determine whether this truly represents a challenge to the predictive validity of current models of cocaine addiction. In addition, the development of promising cocaine use disorder therapeutics derived from animal research will be reviewed, with some discussion regarding how preclinical studies might be modified to better inform clinical outcomes.


Assuntos
Tratamento Farmacológico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Acamprosato/uso terapêutico , Dissuasores de Álcool/uso terapêutico , Alcoolismo/tratamento farmacológico , Bupropiona/uso terapêutico , Estimulantes do Sistema Nervoso Central , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Humanos , Naltrexona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Agonistas Nicotínicos/uso terapêutico , Agentes de Cessação do Hábito de Fumar , Vareniclina/uso terapêutico
3.
Front Immunol ; 11: 573677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042154

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multi-organ damage. Neuropsychiatric lupus (NPSLE) is one of the most common manifestations of human SLE, often causing depression. Interferon-α (IFNα) is a central mediator in disease pathogenesis. Administration of IFNα to patients with chronic viral infections or cancers causes depressive symptoms. Angiotensin-converting enzyme (ACE) is part of the kallikrein-kinin/renin-angiotensin (KKS/RAS) system that regulates many physiological processes, including inflammation, and brain functions. It is known that ACE degrades bradykinin (BK) into inactive peptides. We have previously shown in an in vitro model of mouse bone-marrow-derived dendritic cells (BMDC) and human peripheral blood mononuclear cells that captopril (a centrally acting ACE inhibitor-ACEi) suppressed Type I IFN responsive gene (IRG) expression. In this report, we used the MRL/lpr lupus-prone mouse model, an established model to study NPSLE, to determine the in vivo effects of captopril on Type I IFN and associated immune responses in the periphery and brain and effects on behavior. Administering captopril to MRL/lpr mice decreased expression of IRGs in brain, spleen and kidney, decreased circulating and tissue IFNα levels, decreased microglial activation (IBA-1 expression) and reduced depressive-like behavior. Serotonin levels that are decreased in depression were increased by captopril treatment. Captopril also reduced autoantibody levels in plasma and immune complex deposition in kidney and brain. Thus, ACEi's may have potential for therapeutic use for systemic and NPSLE.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Encéfalo/efeitos dos fármacos , Captopril/administração & dosagem , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Interferon-alfa/administração & dosagem , Vasculite Associada ao Lúpus do Sistema Nervoso Central/tratamento farmacológico , Administração Oral , Animais , Autoanticorpos/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Infusões Subcutâneas , Injeções Intraperitoneais , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Rim/efeitos dos fármacos , Rim/imunologia , Rim/metabolismo , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/metabolismo , Camundongos Endogâmicos MRL lpr , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo
4.
Neuroscience ; 425: 101-111, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31783102

RESUMO

The ventral hippocampus is a component of the neural circuitry involved with context-associated memory for reward and generation of appropriate behavioral responses to context. Glycogen synthase kinase 3 beta (GSK3ß) has been linked to the maintenance of synaptic plasticity, contextual memory retrieval, and is involved in the reconsolidation of cocaine-associated contextual memory. In this study, the effects of targeted downregulation of GSK3ß in the ventral hippocampus were examined on a series of behavioral tests for assessing drug reward-context association and non-reward related memory. The Cre/loxP site-specific recombination system was used to knockdown GSK3ß through bilateral stereotaxic delivery of an adeno-associated virus expressing Cre-recombinase (AAV-Cre) into the ventral hippocampus of adult mice homozygous for a floxed GSK3ß allele. GSK3ß floxed mice injected with AAV-Cre had a loss of 56-75% of GSK3ß in the ventral hippocampus and displayed diminished development of cocaine conditioned place preference, but not morphine place preference as compared with wild-type mice injected with AAV-Cre or GSK3ß floxed mice injected with a control virus, AAV-GFP. Impaired object location memory was observed in mice with GSK3ß downregulation in the ventral hippocampus, but novel object recognition remained intact. These results indicate that GSK3ß signaling in the ventral hippocampus is differentially involved in the formation of place-drug reward association dependent upon drug class. Additionally, ventral hippocampal GSK3ß signaling is important in detection of discrete spatial cues, but not recognition memory for objects.


Assuntos
Hipocampo/metabolismo , Memória/efeitos da radiação , Morfina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Recompensa , Animais , Condicionamento Clássico/efeitos dos fármacos , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos Transgênicos
5.
J Pharmacol Exp Ther ; 371(2): 339-347, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420527

RESUMO

Previous research has demonstrated that activity of glycogen synthase kinase-3 (GSK3) is necessary for the rewarding effects of cocaine. In the present study, a conditional GSK3ß gene knockdown model was used to determine if GSK3ß activity specifically in the nucleus accumbens is important for cocaine conditioned reward. The roles of accumbal GSK3ß in morphine conditioned reward, trans-(±)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide methanesulfonate salt (U50,488H)-induced conditioned place aversion, and cognitive function were also studied. Adult male and female GSK3ß-floxed or wild-type mice were injected with adeno-associated virus/Cre into the nucleus accumbens to reduce expression of GSK3ß and underwent behavioral testing 4 weeks later. The development of cocaine-induced conditioned place preference was significantly attenuated in mice with reduced levels of GSK3ß in the nucleus accumbens, whereas the development of morphine-induced place preference remained intact. Conditional knockdown of GSK3ß in the accumbens prevented the development of conditioned aversion produced by U50,488H, a κ-opioid receptor agonist. Cognitive memory tests revealed deficits in object location memory, but not novel object recognition in mice with accumbal GSK3ß knockdown. These data demonstrate that GSK3ß in the nucleus accumbens is required for cocaine conditioned place preference and U50,488H conditioned place aversion, as well as spatial memory in object location task, indicating differential roles of GSK3ß in the psychostimulant and opiate reward process, as well as in memory for spatial locations and object identity. SIGNIFICANCE STATEMENT: Knockdown of GSK3ß in the nucleus accumbens attenuated the development of cocaine-induced place preference, as well as conditioned place aversion to U50,488H, a κ-opioid receptor agonist. In contrast, the development of morphine place preference was not altered by GSK3ß knockdown. GSK3ß knockdown in nucleus accumbens impaired performance in the object location task, but not the novel object recognition task. These results elucidate different physiological roles of accumbal GSKß in conditioned reward, aversion, and memory.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Cocaína/farmacologia , Condicionamento Psicológico/fisiologia , Glicogênio Sintase Quinase 3 beta/deficiência , Memória/fisiologia , Morfina/farmacologia , Núcleo Accumbens/metabolismo , Analgésicos não Narcóticos/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Memória/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Núcleo Accumbens/efeitos dos fármacos , Distribuição Aleatória
6.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L475-L485, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313616

RESUMO

The alveolus participates in gas exchange, which can be impaired by environmental factors and toxins. There is an increase in using electronic cigarettes (e-cigarettes); however, their effect on human primary alveolar epithelial cells is unknown. Human lungs were obtained from nonsmoker organ donors to isolate alveolar type II (ATII) cells. ATII cells produce and secrete pulmonary surfactant and restore the epithelium after damage, and mitochondrial function is important for their metabolism. Our data indicate that human ATII cell exposure to e-cigarette aerosol increased IL-8 levels and induced DNA damage and apoptosis. We also studied the cytoprotective effect of DJ-1 against ATII cell injury. DJ-1 knockdown in human primary ATII cells sensitized cells to mitochondrial dysfunction as detected by high mitochondrial superoxide production, decreased mitochondrial membrane potential, and calcium elevation. DJ-1 knockout (KO) mice were more susceptible to ATII cell apoptosis and lung injury induced by e-cigarette aerosol compared with wild-type mice. Regulation of the oxidative phosphorylation (OXPHOS) is important for mitochondrial function and protection against oxidative stress. Major subunits of the OXPHOS system are encoded by both nuclear and mitochondrial DNA. We found dysregulation of OXPHOS complexes in DJ-1 KO mice after exposure to e-cigarette aerosol, which could disrupt the nuclear/mitochondrial stoichiometry, resulting in mitochondrial dysfunction. Together, our results indicate that DJ-1 deficiency sensitizes ATII cells to damage induced by e-cigarette aerosol leading to lung injury.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Interleucina-8/genética , Nicotina/farmacologia , Proteína Desglicase DJ-1/genética , Aerossóis , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Cálcio/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Interleucina-8/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Cultura Primária de Células , Proteína Desglicase DJ-1/deficiência , Proteína Desglicase DJ-1/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Superóxidos/metabolismo
7.
Cell Rep ; 26(2): 330-337.e4, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625315

RESUMO

Sigma-1 receptors (Sig-1Rs) are integral ER membrane proteins. They bind diverse ligands, including psychoactive drugs, and regulate many signaling proteins, including the inositol 1,4,5-trisphosphate receptors (IP3Rs) that release Ca2+ from the ER. The endogenous ligands of Sig-1Rs are unknown. Phospholipase D (PLD) cleaves phosphatidylcholine to choline and phosphatidic acid (PA), with PA assumed to mediate all downstream signaling. We show that choline is also an intracellular messenger. Choline binds to Sig-1Rs, it mimics other Sig-1R agonists by potentiating Ca2+ signals evoked by IP3Rs, and it is deactivated by metabolism. Receptors, by stimulating PLC and PLD, deliver two signals to IP3Rs: IP3 activates IP3Rs, and choline potentiates their activity through Sig-1Rs. Choline is also produced at synapses by degradation of acetylcholine. Choline uptake by transporters activates Sig-1Rs and potentiates Ca2+ signals. We conclude that choline is an endogenous agonist of Sig-1Rs linking extracellular stimuli, and perhaps synaptic activity, to Ca2+ signals.


Assuntos
Sinalização do Cálcio , Colina/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores sigma/metabolismo , Animais , Linhagem Celular , Humanos , Células MCF-7 , Camundongos , Fosfolipase D/metabolismo , Receptor Sigma-1
8.
Eur J Neurosci ; 44(10): 2818-2828, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27623427

RESUMO

Nicotine dependence is associated with increased risk for emotional, cognitive and neurological impairments later in life. This study investigated the long-term effects of nicotine exposure during adolescence and adulthood on measures of depression, anxiety, learning and hippocampal pyramidal cell morphology. Mice (C57BL/6J) received saline or nicotine for 12 days via pumps implanted on postnatal day 32 (adolescent) or 54 (adults). Thirty days after cessation of nicotine/saline, mice were tested for learning using contextual fear conditioning, depression-like behaviors using the forced swim test or anxiety-like behaviors with the elevated plus maze. Brains from nicotine- or saline-exposed mice were processed with Golgi stain for whole neuron reconstruction in the CA1 and CA3 regions of the hippocampus. Results demonstrate higher depression-like responses in both adolescent and adult mice when tested during acute nicotine withdrawal. Heightened depression-like behaviors persisted when tested after 30 days of nicotine abstinence in mice exposed as adolescents, but not adults. Adult, but not adolescent, exposure to nicotine resulted in increased open-arm time when tested after 30 days of abstinence. Nicotine exposure during adolescence caused deficits in contextual fear learning indicated by lower levels of freezing to the context as compared with controls when tested 30 days later. In addition, reduced dendritic length and complexity in the apical CA1 branches in adult mice exposed to nicotine during adolescence were found. These results demonstrate that nicotine exposure and withdrawal can have long-term effects on emotional and cognitive functioning, particularly when nicotine exposure occurs during the critical period of adolescence.


Assuntos
Cognição/efeitos dos fármacos , Depressão/etiologia , Emoções/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Animais , Condicionamento Clássico , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos
9.
Cell Calcium ; 58(2): 196-207, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26077147

RESUMO

Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway identified in vitro.


Assuntos
Cocaína/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Receptores sigma/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Retículo Endoplasmático/metabolismo , Imidazóis/farmacologia , Inositol 1,4,5-Trifosfato/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/metabolismo , Receptor Sigma-1
10.
Hippocampus ; 25(3): 354-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25294309

RESUMO

Intense craving for drug and relapse are observed in addicts who are exposed to environmental stimuli associated with drug-taking behavior even after long periods of abstinence. The hippocampus is a brain region known to be involved in contextual processing, taking place predominantly in the septal hippocampus, and emotional processing, taking place predominantly in the temporal hippocampus. Conditioned place preference is an animal model of context-conditioned reward. The dentate gyrus is a hippocampal sub-region particularly important for the acquisition of cocaine-induced place preference and is a site of continuous neurogenesis, which has been implicated in the vulnerability to drug-taking behavior. Therefore, these experiments explored the role of newly generated neurons in drug reward-context association by examining the activation, as determined by expression of the immediate early gene cfos, of young and mature granule cells in the septal and temporal dentate gyrus of adult rats that were re-exposed to a drug-paired environment following the development of cocaine place preference. The overall level of cfos expression was increased in both the septal and temporal dentate gyrus of animals that developed place preference and were re-exposed to the drug paired environment compared with re-exposure to a neutral environment. Overall level of neurogenesis, as detected by the S-phase marker 5'-bromo-2'-deoxyuridine (BrdU) and the immature neuron marker doublecortin (DCX), was unaltered by cocaine conditioning. However, the number of activated new neurons (DCX + cfos) was greater in the temporal dentate gyrus of cocaine-conditioned rats re-exposed to the drug-paired environment as compared to those re-exposed to a neutral environment. Further understanding of the role of dentate gyrus neurogenesis on the conditioned effects of drugs of abuse may provide new insights into the role of this process in the expression of addictive behaviors.


Assuntos
Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Giro Denteado/citologia , Inibidores da Captação de Dopamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Análise de Variância , Animais , Bromodesoxiuridina , Giro Denteado/efeitos dos fármacos , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Masculino , Proteínas Associadas aos Microtúbulos , Neurogênese/efeitos dos fármacos , Neuropeptídeos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Recompensa
11.
Psychopharmacology (Berl) ; 231(16): 3109-18, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24595501

RESUMO

RATIONAL: Memories return to a labile state following their retrieval and must undergo a process of reconsolidation to be maintained. Thus, disruption of cocaine reward memories by interference with reconsolidation may be therapeutically beneficial in the treatment of cocaine addiction. OBJECTIVE: The objectives were to elucidate the signaling pathway involved in reconsolidation of cocaine reward memory and to test whether targeting this pathway could disrupt cocaine-associated contextual memory. METHODS: Using a mouse model of conditioned place preference, regulation of the activity of glycogen synthase kinase-3 (GSK3), mammalian target of Rapamycin complex 1 (mTORC1), P70S6K, ß-catenin, and the upstream signaling molecule Akt, was studied in cortico-limbic-striatal circuitry after re-exposure to an environment previously paired with cocaine. RESULT: Levels of phosporylated Akt-Thr308, GSK3α-Ser21, GSK3ß-Ser9, mTORC1, and P70S6K were reduced in the nucleus accumbens and hippocampus 10 min after the reactivation of cocaine cue memories. Levels of pAkt and pGSK3 were also reduced in the prefrontal cortex. Since reduced phosphorylation of GSK3 indicates heightened enzyme activity, the effect of a selective GSK3 inhibitor, SB216763, on reconsolidation was tested. Administration of SB216763 immediately after exposure to an environment previously paired with cocaine abrogated a previously established place preference, suggesting that GSK3 inhibition interfered with reconsolidation of cocaine-associated reward memories. CONCLUSIONS: These findings suggest that the Akt/GSK3/mTORC1 signaling pathway in the nucleus accumbens, hippocampus, and/or prefrontal cortex is critically involved in the reconsolidation of cocaine contextual reward memory. Inhibition of GSK3 activity during memory retrieval can erase an established cocaine place preference.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/psicologia , Condicionamento Operante/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/fisiologia , Complexos Multiproteicos/fisiologia , Proteína Oncogênica v-akt/fisiologia , Recompensa , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/fisiologia , Animais , Sinais (Psicologia) , Inibidores Enzimáticos/farmacologia , Medo/efeitos dos fármacos , Medo/psicologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Indóis/farmacologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/metabolismo , Masculino , Maleimidas/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Memória/efeitos dos fármacos , Camundongos , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Fosforilação , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo
12.
PLoS One ; 9(2): e88026, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505362

RESUMO

The Akt - GSK3 signaling pathway has been recently implicated in psychostimulant-induced behavioral and cellular effects. Here, the ability of cocaine to regulate the activity of Akt and GSK3 was investigated by measuring the phosphorylation states of the two kinases. The anatomical specificity of the response was determined, as was the contributions of dopamine and NMDA receptors to the actions of cocaine. As GSK3 activity was found to be increased by cocaine, subsequent experiments investigated the importance of GSK3 activation in cocaine conditioned reward. Adult male CD-1 mice were injected with cocaine or saline, and levels of phosphorylated Akt and GSK3α/ß were measured 30 minutes later. Acute administration of cocaine significantly decreased the phosphorylation of Akt-Thr308 (pAkt-Thr308) and GSK3ß in the caudate putamen and nucleus accumbens core, without altering pAkt-Ser473 and pGSK3α. To investigate the role of dopamine and NMDA receptors in the regulation of Akt and GSK3 by cocaine, specific receptor antagonists were administered prior to cocaine. Blockade of dopamine D2 receptors with eticlopride prevented the reduction of pAkt-Thr308 produced by cocaine, whereas antagonists at dopamine D1, dopamine D2 or glutamatergic NMDA receptors each blocked cocaine-induced reductions in pGSK3ß. The potential importance of GSK3 activity in the rewarding actions of cocaine was determined using a cocaine conditioned place preference procedure. Administration of the selective GSK3 inhibitor, SB 216763, prior to cocaine conditioning sessions blocked the development of cocaine place preference. In contrast, SB 216763 did not alter the acquisition of a contextual fear conditioning response, demonstrating that SB 216763 did not globally inhibit contextual learning processes. The results of this study indicate that phosphorylation of GSK3ß is reduced, hence GSK3ß activity is increased following acute cocaine, an effect that is contingent upon both dopaminergic and glutamatergic receptors. Further, GSK3 activity is required for the development of cocaine conditioned reward.


Assuntos
Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
13.
J Neurochem ; 107(2): 570-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18717814

RESUMO

Protein kinase B (also known as Akt) signaling regulates dopamine-mediated locomotor behaviors. Here the ability of cocaine to regulate Akt and glycogen synthase kinase 3 (GSK3) was studied. Rats were injected with cocaine or saline in a binge-pattern, which consisted of three daily injections of 15 mg/kg cocaine or 1 mL/kg saline spaced 1 h apart for 1, 3, or 14 days. Amygdala, nucleus accumbens, caudate putamen, and hippocampus tissues were dissected 30 min following the last injection and analyzed for phosphorylated and total Akt and GSK3(alpha and beta) protein levels using western blot analysis. Phosphorylation of Akt on the threonine-308 (Thr308) residue was significantly reduced in the nucleus accumbens and increased in the amygdala after 1 day of cocaine treatment; however, these effects were not accompanied by a significant decrease in GSK3 phosphorylation. Phosphorylation of Akt and GSK3 was significantly reduced after 14 days of cocaine administration, an effect that was only observed in the amygdala. Cocaine did not alter Akt or GSK3 phosphorylation in the caudate putamen or hippocampus. The findings in nucleus accumbens may reflect dopaminergic motor-stimulant activity caused by acute cocaine, whereas the effects in amygdala may be associated with changes in emotional state that occur after acute and chronic cocaine exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Encéfalo/anatomia & histologia , Esquema de Medicação , Quinase 3 da Glicogênio Sintase/genética , Masculino , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
14.
Biol Psychiatry ; 63(11): 1066-74, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18275938

RESUMO

BACKGROUND: Prenatal exposure to cocaine can impede normal brain development, triggering a range of neuroanatomical and behavioral anomalies that are evident throughout life. Mouse models have been especially helpful in delineating neuro-teratogenic consequences after prenatal exposure to cocaine. The present study employed a mouse model to investigate alterations in D(1) dopamine receptor signaling and downstream immediate-early gene induction in the striatum of mice exposed to cocaine in utero. METHODS: Basal, forskolin-, and D(1) receptor agonist-induced cyclic adenosine monophosphate (cAMP) levels were measured ex vivo in the adult male striatum in mice exposed to cocaine in utero. Further studies assessed cocaine-induced zif 268 and homer 1 expression in the striatum of juvenile (P15), adolescent (P36), and adult (P60) male mice. RESULTS: The D(1) dopamine receptor agonist SKF82958 induced significantly higher levels of cAMP in adult male mice treated with cocaine in utero compared with saline control subjects. No effects of the prenatal treatment were found for cAMP formation induced by forskolin. After an acute cocaine challenge (15 mg/kg, IP), these mice showed greater induction of zif 268 and homer 1, an effect that was most robust in the medial part of the mid-level striatum and became more pronounced with increasing age. CONCLUSIONS: Together these findings indicate abnormally enhanced D(1) receptor signal transduction in adult mice after prenatal cocaine exposure. Such changes in dopamine receptor signaling might underlie aspects of long-lasting neuro-teratogenic effects evident in some humans after in utero exposure to cocaine and identify the striatum as one target potentially vulnerable to gestational cocaine exposure.


Assuntos
Cocaína/efeitos adversos , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/efeitos adversos , Proteínas Imediatamente Precoces/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Receptores de Dopamina D1/metabolismo , Adenilil Ciclases/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Comportamento Animal , Benzazepinas/farmacologia , Colforsina/farmacologia , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas Imediatamente Precoces/genética , Locomoção/fisiologia , Masculino , Camundongos , Gravidez , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ativação Transcricional
15.
J Neurosci ; 28(5): 1198-207, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18234897

RESUMO

Responses to psychostimulants vary with age, but the molecular etiologies of these differences are largely unknown. The goal of the present research was to identify age-specific behavioral and molecular adaptations to cocaine and to elucidate the mechanisms involved therein. Postweanling, periadolescent, and adult male CD-1 mice were exposed to cocaine (20 mg/kg) for 7 d. The rewarding effects of cocaine were assessed, as were the response to a Trk antagonist and the regulation of dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32). Cocaine was rewarding in both periadolescent and adult mice using a conditioned place preference procedure. In contrast, postweanling mice failed to demonstrate significant cocaine-induced place preference. Because components of the neurotrophin system including brain-derived neurotrophic factor and TrkB are developmentally regulated, their role in the age-specific effects of cocaine was determined using the Trk receptor antagonist K252a. Postweanling mice that received K252a before daily cocaine showed a significant place preference to the cocaine-paired environment that was not seen in the absence of K252a. DARPP-32 protein levels were significantly upregulated in the lateral region of the caudate-putamen exclusively in postweanling mice after chronic cocaine. Daily pretreatment with K252a attenuated the induction of DARPP-32 in the postweanling striatum. These data indicate that Trk neurotransmission plays a role in age-specific behavioral and molecular responses to cocaine and concurrently modulates DARPP-32 levels.


Assuntos
Cocaína/farmacologia , Atividade Motora/fisiologia , Receptor trkB/química , Receptor trkB/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Carbazóis/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/fisiologia , Alcaloides Indólicos/farmacologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Receptor trkB/antagonistas & inibidores , Receptores de Neurotransmissores/antagonistas & inibidores , Receptores de Neurotransmissores/química , Receptores de Neurotransmissores/fisiologia
16.
Psychopharmacology (Berl) ; 195(2): 265-72, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17687547

RESUMO

RATIONALE: Considerable evidence suggests that the endogenous opioid system plays a role in mediating the behavioral effects of psychostimulants. Opioidergic drugs have been shown to have profound effects on cocaine-induced behavioral sensitization and conditioned reward. However, the role specifically of the mu opioid receptor in this regard is unclear as most previous pharmacological studies have used nonselective opioid receptor ligands. OBJECTIVES: The objective of this series of experiments was to elucidate the role of mu opioid receptors in the behavioral effects of cocaine in the rat. MATERIALS AND METHODS: Adult male rats were used to assess the effects of the selective mu opioid receptor antagonist D: -Phe-Cys-Tyr-D: -Trp-Arg-Thr-Pen-Thr (CTAP) on acute hyperactivity, locomotor sensitization, and conditioned place preference induced by cocaine. Intracerebroventricular administration of CTAP, 4 microg, was paired with peripheral injections of cocaine, 10-15 mg/kg. RESULTS: Mu receptor blockade significantly attenuated cocaine-induced hyperactivity, as well as the development of behavioral sensitization. Pretreatment with CTAP also prevented the development of conditioned place preference to cocaine. Administration of CTAP alone had neither effect on locomotor activity nor did it demonstrate aversive or rewarding properties. CONCLUSIONS: These results suggest that activation of mu opioid receptors by endogenous opioids is an important contributor to cocaine-induced hyperactivity and the development of behavioral sensitization and conditioned reward.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Atividade Motora/efeitos dos fármacos , Receptores Opioides mu/fisiologia , Recompensa , Análise de Variância , Animais , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Fragmentos de Peptídeos , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/antagonistas & inibidores , Somatostatina
17.
J Pharmacol Exp Ther ; 314(1): 148-54, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15772255

RESUMO

Induction of the transcription factor deltaFosB was studied to examine neurochemical adaptations produced by repeated opiate administration. The mechanism of this induction was also investigated. The 35- to 37-kDa isoforms of deltaFosB, also referred to as the chronic Fras, were measured in the nucleus accumbens, caudate putamen, and frontal cortex of male Sprague-Dawley rats after either an acute injection of morphine or an escalating dosing schedule of morphine for 10 days. Heroin was also tested to determine whether the findings extend to other opiates. Results from Western blot analysis using an anti-fosB antibody demonstrate that 10-day intermittent escalating dose morphine produced a significant increase in deltaFosB-immunoreactivity in the nucleus accumbens, caudate putamen and frontal cortex, whereas a single injection of morphine had no effect on Fra immunoreactivity. Heroin administered twice daily for 10 days by an intermittent escalating dose schedule also induced deltaFosB in the caudate putamen, but not in the nucleus accumbens or frontal cortex. Daily pretreatment with the selective D1-like dopamine receptor antagonist SCH 23390 [R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] significantly blocked morphine-induced deltaFosB induction in the nucleus accumbens and caudate putamen, but not in the frontal cortex. These results demonstrate that morphine-induced deltaFosB up-regulation in the striatum, but not in the frontal cortex, is modulated by D1 dopamine receptors, suggesting that the mechanisms involved in the up-regulation of these chronic Fras by morphine is brain region-specific.


Assuntos
Analgésicos Opioides/farmacologia , Morfina/farmacologia , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Receptores de Dopamina D1/efeitos dos fármacos , Fatores de Transcrição/biossíntese , Analgésicos Opioides/administração & dosagem , Animais , Benzazepinas/farmacologia , Western Blotting , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/metabolismo , Antagonistas de Dopamina/farmacologia , Heroína/farmacologia , Masculino , Morfina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Putamen/efeitos dos fármacos , Putamen/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos
18.
J Pharmacol Exp Ther ; 310(2): 774-82, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15056728

RESUMO

In vitro evidence suggests that extracellular signal-regulated protein kinases (ERKs) and Akt (also referred to as protein kinase B) are among the myriad of intracellular signaling molecules regulated by opioid receptors. The present study examined the regulation of ERK and Akt activation in the nucleus accumbens and caudate putamen following acute and chronic morphine administration in the rat. ERK and Akt are activated by phosphorylation, hence the levels of phosphorylated ERK (pERK) and Akt (pAkt) as well as total levels of ERK and Akt protein were measured by Western blot analysis. Male Sprague-Dawley rats received either a single injection of morphine or twice daily injections of morphine for 6 or 10 days. Following acute morphine, pERK levels were significantly decreased in the nucleus accumbens but not in the caudate putamen. Phosphorylated Akt levels in the nucleus accumbens were significantly increased after a single morphine injection. Naltrexone pretreatment prevented both the morphine-induced pERK down-regulation and pAkt up-regulation. Although reductions in pERK levels were evident after 6 days of morphine administration, no differences were observed in pERK levels after 10 days. In contrast to the up-regulation seen after acute morphine, pAkt levels in the nucleus accumbens were significantly decreased after chronic morphine administration. Thus, the differential activation patterns of both ERK and Akt after acute and chronic morphine administration could have important implications for understanding additional pathways mediating opioid signaling in vivo.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Morfina/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas c-akt , Ratos , Transdução de Sinais/efeitos dos fármacos
19.
Brain Res Dev Brain Res ; 147(1-2): 67-75, 2003 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-14741752

RESUMO

Adenylyl cyclase activity was measured in the striatum of naive mice as a function of age and in mice exposed in utero to cocaine. In naive Swiss-Webster mice, basal and forskolin-stimulated adenylyl cyclase activity increased gradually from embryonic day 13 (E13) until 2-3 weeks of age when activity peaked before decreasing slightly to adult levels. The ability of the dopamine D1 receptor agonist, SKF 82958, to stimulate adenylyl cyclase activity also increased in magnitude until P15. In a separate study, pregnant Swiss-Webster mice were injected twice daily with cocaine (15 mg/kg, s.c.) or an equal volume of saline from E10 to E17. Adenylyl cyclase activity was measured in the striatum of E18 embryos. Basal adenylyl cyclase activity was significantly reduced following prenatal exposure to cocaine. Likewise, the ability of forskolin or SKF 82958 to stimulate adenylyl cyclase was attenuated following cocaine exposure. DeltaFosB was not induced, contrary to what is seen in adult mice. These results demonstrate a functional change in a critical signal transduction pathway following chronic in utero exposure to cocaine that might have profound effects of the development of the brain. Alterations in the cAMP system may underlie some of the deficits seen in humans exposed in utero to cocaine.


Assuntos
Adenilil Ciclases/metabolismo , Cocaína/toxicidade , Glicoproteínas de Membrana , Neostriado/embriologia , Neostriado/enzimologia , Proteínas do Tecido Nervoso , Actinas/biossíntese , Animais , Western Blotting , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Fosfoproteína 32 Regulada por cAMP e Dopamina , Feminino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Neostriado/efeitos dos fármacos , Fosfoproteínas/biossíntese , Gravidez , Proteínas Proto-Oncogênicas c-fos/biossíntese
20.
J Neurosci ; 22(21): 9155-9, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12417638

RESUMO

Children and adolescents are increasingly exposed to psychostimulants, either illicitly or for the treatment of common neuropsychiatric conditions, such as attention deficit disorder with and without hyperactivity. Despite the widespread use of psychomotor stimulants in younger age groups, little is known regarding the chronic molecular neuroadaptive responses to these agents in the immature brain. Here we demonstrate that, after chronic administration of the psychostimulants cocaine and amphetamine, the transcription factor DeltaFosB is upregulated in the nucleus accumbens of periadolescent mice but not in post-weanling or adult mice. Induction of DeltaFosB also occurs exclusively in the caudate putamen of periadolescent mice after amphetamine administration. These results demonstrate the unique plasticity in the adolescent brain of a critical molecule that regulates psychostimulant action and suggest that these neuroadaptive changes may be involved in the mediation of enhanced addictive tendencies in the adolescent relative to the adult.


Assuntos
Anfetamina/farmacologia , Núcleo Caudado/metabolismo , Cocaína/farmacologia , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Putamen/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Animais , Núcleo Caudado/química , Núcleo Caudado/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Fosfoproteína 32 Regulada por cAMP e Dopamina , Immunoblotting , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Fosfoproteínas/metabolismo , Putamen/química , Putamen/efeitos dos fármacos , Maturidade Sexual , Tempo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA