Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 41(8): 204, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033171

RESUMO

The concept of drug repurposing is now widely utilized by biomedical scientists for drug discovery. An example of this is the use of selegiline (SEL), a monoamine oxidase inhibitor that was initially used for the management of depression but is now being considered for another purpose. This study compares the cytotoxic effects of SEL on different cancer cells. Further, the study explores the molecular mechanism of cell death, validating the possibility of its repurposing for cancer. Preliminary analysis of network pharmacological data was conducted in silico, followed by in vitro cytotoxicity tests on PC12, G361, MDA-MB231, MCF7, THP-1, and Hela cells under normoxic and hypoxic conditions, using the MTT assay. The mechanism of cell death was then confirmed by performing DAPI and FITC-conjugated Annexin V and Propidium Iodide (PI) staining assays. Additionally, ROS levels and PKC phosphorylation were also evaluated. In silico analysis has revealed that SEL is associated with ten genes linked to different cancer types. Specifically, SEL was most cytotoxic to neuronal pheochromocytoma, triple-negative human epithelial breast cancer cells, and ER+ and PR+ breast cancer cells. Furthermore, it was observed that this cell death occurred through ROS-independent apoptosis pathways. In addition, SEL was found to inhibit the phosphorylation of PKC, which may contribute to cell death. SEL induces apoptosis in breast cancer cells independently of reactive oxygen species and inhibits the phosphorylation of protein kinase C, which merits further exploration.


Assuntos
Apoptose , Neoplasias da Mama , Espécies Reativas de Oxigênio , Selegilina , Humanos , Selegilina/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Linhagem Celular Tumoral , Inibidores da Monoaminoxidase/farmacologia , Animais , Ratos , Antineoplásicos/farmacologia , Células PC12 , Células HeLa , Células MCF-7 , Reposicionamento de Medicamentos
2.
J Biophotonics ; 16(9): e202300148, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37280718

RESUMO

A dynamically tunable metal clad planar waveguide having 0.62PMN-0.38PT material is simulated and optimized for detection of cancer cells. Angular interrogation of the TE0 mode of waveguide shows that critical angle increases greater than the resonance angle with increasing of cover refractive index, which limits the detection range of waveguide. To overcome this limitation, proposed waveguide applies a potential on the PMN-PT adlayer. Although a sensitivity of 105.42 degree/RIU was achieved at 70 Volts in testing the proposed waveguide, it was found that the optimal performance parameters were obtained at 60 Volts. At this voltage, the waveguide demonstrated detection range 1.3330-1.5030, a detection accuracy 2393.33, and a figure of merit 2243.59 RIU-1 , which enabled the detection of the entire range of the targeted cancer cells. Therefore, it is recommended to apply a potential of 60 Volts to achieve the best performance from the proposed waveguide.


Assuntos
Metais , Neoplasias , Vibração , Neoplasias/diagnóstico por imagem
3.
J Thromb Haemost ; 20(3): 729-741, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34846792

RESUMO

AIMS: P-selectin is a key surface adhesion molecule for the interaction of platelets with leukocytes. We have shown previously that the N-terminal domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb) binds to P-selectin and interferes with platelet-leukocyte aggregate formation. Here, we aimed to identify the minimal Efb motif required for binding platelets and to characterize its ability to interfering with the formation of platelet-leukocyte aggregates. METHODS AND RESULTS: Using a library of synthetic peptides, we mapped the platelet-binding site to a continuous 20 amino acid stretch. The peptide Efb68-87 was able to bind to resting and, to a greater extent, thrombin-stimulated platelets in the absence of fibrinogen. Dot blots, pull-down assays and P-selectin glycoprotein ligand-1 (PSGL-1) competitive binding experiments identified P-selectin as the cellular docking site mediating Efb68-87 platelet binding. Accordingly, Efb68-87 did not bind to other blood cells and captured platelets from human whole blood under low shear stress conditions. Efb68-87 did not affect platelet activation as tested by aggregometry, flow cytometry and immunoblotting, but inhibited the formation of platelet-leukocyte aggregates (PLAs). Efb68-87 also interfered with the platelet-dependent stimulation of neutrophil extracellular traps (NETs) formation in vitro. CONCLUSIONS: We have identified Efb68-87 as a novel selective platelet-binding peptide. Efb68-87 binds directly to P-selectin and inhibits interactions of platelets with leukocytes that lead to PLA and NET formation. As PLAs and NETs play a key role in thromboinflammation, Efb68-87 is an exciting candidate for the development of novel selective inhibitors of the proinflammatory activity of platelets.


Assuntos
Selectina-P , Trombose , Plaquetas/metabolismo , Fibrinogênio/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos/metabolismo , Selectina-P/metabolismo , Peptídeos/metabolismo , Ativação Plaquetária , Trombose/metabolismo
4.
Biochem J ; 449(2): 415-25, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23116157

RESUMO

Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multi-enzyme complexes, is essential for metabolism in aerobic bacteria and eukarya. In Escherichia coli, lipoylation is catalysed by LplA (lipoate protein ligase) or by LipA (lipoic acid synthetase) and LipB [lipoyl(octanoyl) transferase] combined. Whereas bacterial and eukaryotic LplAs comprise a single two-domain protein, archaeal LplA function typically involves two proteins, LplA-N and LplA-C. In the thermophilic archaeon Thermoplasma acidophilum, LplA-N and LplA-C are encoded by overlapping genes in inverted orientation (lpla-c is upstream of lpla-n). The T. acidophilum LplA-N structure is known, but the LplA-C structure is unknown and LplA-C's role in lipoylation is unclear. In the present study, we have determined the structures of the substrate-free LplA-N-LplA-C complex and E2lipD (dihydrolipoyl acyltransferase lipoyl domain) that is lipoylated by LplA-N-LplA-C, and carried out biochemical analyses of this archaeal lipoylation system. Our data reveal the following: (i) LplA-C is disordered but folds upon association with LplA-N; (ii) LplA-C induces a conformational change in LplA-N involving substantial shortening of a loop that could repress catalytic activity of isolated LplA-N; (iii) the adenylate-binding region of LplA-N-LplA-C includes two helices rather than the purely loop structure of varying order observed in other LplA structures; (iv) LplAN-LplA-C and E2lipD do not interact in the absence of substrate; (v) LplA-N-LplA-C undergoes a conformational change (the details of which are currently undetermined) during lipoylation; and (vi) LplA-N-LplA-C can utilize octanoic acid as well as lipoic acid as substrate. The elucidated functional inter-dependence of LplA-N and LplA-C is consistent with their evolutionary co-retention in archaeal genomes.


Assuntos
Proteínas Arqueais/metabolismo , Peptídeo Sintases/metabolismo , Processamento de Proteína Pós-Traducional , Thermoplasma/enzimologia , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação , Cristalografia por Raios X , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lipoilação , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Ácido Tióctico/química , Ácido Tióctico/metabolismo
5.
Mol Immunol ; 44(10): 2507-17, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17258808

RESUMO

The chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is reported to bind to the receptors for C5a and formylated peptides and has been proposed as a promising lead for the development of new anti-inflammatory compounds. Here we have examined the receptor specificity and mode of action of recombinant CHIPS(28-149) and also the immune response to CHIPS(28-149) in patients with S. aureus infections and in uninfected controls. Recombinant CHIPS(28-149) bound with high affinity to the human C5a receptor (C5aR), but had low affinity for the second C5a receptor, C5L2, and the formyl peptide receptor, FPR. Although ligand binding to C5aR was potently inhibited, CHIPS(28-149) had much weaker effects on ligand binding to C5L2 and FPR. Similarly, CHIPS(28-149) potently inhibited the ligand-induced activation of C5aR but was less potent at inhibition via FPR. NMR studies showed that CHIPS(28-149) bound directly to the N-terminus of C5aR but not C5L2, and CHIPS(28-149) residues involved in the interaction were identified by chemical shift analysis. All human sera examined contained high titres of IgG and IgA reactivity against CHIPS(28-149), and no correlation was observed between infection status at the time of serum collection and antibody titre. Individual serum samples promoted or inhibited the binding of CHIPS(28-149) to C5aR, or had no effect. IgG depletion of serum samples abrogated the effects on CHIPS binding, demonstrating that these were antibody mediated. Sera from infected individuals were more likely to inhibit CHIPS(28-149) binding than sera from healthy controls. However, high antibody titres correlated well with both inhibition and enhancement of CHIPS(28-149) binding to C5aR; this suggests that the inhibitory effect relates to epitope specificity rather than greater antibody binding. We conclude that CHIPS is likely to be too immunogenic to be used as an anti-inflammatory treatment but that some antibodies against CHIPS may be useful in the treatment of S. aureus infections.


Assuntos
Proteínas de Bactérias/imunologia , Imunidade , Proteínas de Membrana/imunologia , Receptores de Complemento/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Calorimetria , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Conformação Proteica , Mapeamento de Interação de Proteínas , Receptor da Anafilatoxina C5a , Receptores de Complemento/química , Receptores de Complemento/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA