Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(7): 1514-1532.e15, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38788712

RESUMO

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.


Assuntos
Morte Celular Imunogênica , Proteólise , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Humanos , Animais , Camundongos , Proteólise/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Morte Celular Imunogênica/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Necroptose/imunologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia , Imunoterapia/métodos
2.
Cell ; 186(14): 3013-3032.e22, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352855

RESUMO

Mitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling. Elevated Z-form mtDNA, ZBP1 expression, and IFN-I signaling are observed in cardiomyocytes after exposure to Doxorubicin, a first-line chemotherapeutic agent that induces frequent cardiotoxicity in cancer patients. Strikingly, mice lacking ZBP1 or IFN-I signaling are protected from Doxorubicin-induced cardiotoxicity. Our findings reveal ZBP1 as a cooperative partner for cGAS that sustains IFN-I responses to mitochondrial genome instability and highlight ZBP1 as a potential target in heart failure and other disorders where mtDNA stress contributes to interferon-related pathology.


Assuntos
Cardiotoxicidade , DNA Mitocondrial , Animais , Camundongos , DNA Mitocondrial/metabolismo , Imunidade Inata , Interferons/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação
3.
Cell Host Microbe ; 29(8): 1266-1276.e5, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34192517

RESUMO

Necroptosis mediated by Z-nucleic-acid-binding protein (ZBP)1 (also called DAI or DLM1) contributes to innate host defense against viruses by triggering cell death to eliminate infected cells. During infection, vaccinia virus (VACV) protein E3 prevents death signaling by competing for Z-form RNA through an N-terminal Zα domain. In the absence of this E3 domain, Z-form RNA accumulates during the early phase of VACV infection, triggering ZBP1 to recruit receptor interacting protein kinase (RIPK)3 and execute necroptosis. The C-terminal E3 double-strand RNA-binding domain must be retained to observe accumulation of Z-form RNA and induction of necroptosis. Substitutions of Zα from either ZBP1 or the RNA-editing enzyme double-stranded RNA adenosine deaminase (ADAR)1 yields fully functional E3 capable of suppressing virus-induced necroptosis. Overall, our evidence reveals the importance of Z-form RNA generated during VACV infection as a pathogen-associated molecular pattern (PAMP) unleashing ZBP1/RIPK3/MLKL-dependent necroptosis unless suppressed by viral E3.


Assuntos
Necroptose/fisiologia , Proteínas de Ligação a RNA/metabolismo , Vaccinia virus/fisiologia , Proteínas Virais/metabolismo , Adenosina Desaminase/metabolismo , Morte Celular , Humanos , Necroptose/genética , Proteínas Quinases/metabolismo , RNA de Cadeia Dupla , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Vaccinia virus/genética
4.
Cell ; 180(6): 1115-1129.e13, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200799

RESUMO

Influenza A virus (IAV) is a lytic RNA virus that triggers receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated pathways of apoptosis and mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptosis in infected cells. ZBP1 initiates RIPK3-driven cell death by sensing IAV RNA and activating RIPK3. Here, we show that replicating IAV generates Z-RNAs, which activate ZBP1 in the nucleus of infected cells. ZBP1 then initiates RIPK3-mediated MLKL activation in the nucleus, resulting in nuclear envelope disruption, leakage of DNA into the cytosol, and eventual necroptosis. Cell death induced by nuclear MLKL was a potent activator of neutrophils, a cell type known to drive inflammatory pathology in virulent IAV disease. Consequently, MLKL-deficient mice manifest reduced nuclear disruption of lung epithelia, decreased neutrophil recruitment into infected lungs, and increased survival following a lethal dose of IAV. These results implicate Z-RNA as a new pathogen-associated molecular pattern and describe a ZBP1-initiated nucleus-to-plasma membrane "inside-out" death pathway with potentially pathogenic consequences in severe cases of influenza.


Assuntos
Vírus da Influenza A/genética , Necroptose/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Apoptose/genética , Morte Celular/genética , Linhagem Celular Tumoral , Feminino , Vírus da Influenza A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , RNA/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia
5.
Virology ; 522: 92-105, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30029015

RESUMO

Betaherpesvirus dUTPase homologs are core herpesvirus proteins, but little is known about their role during infection. Human cytomegalovirus (HCMV) UL72 and murine cytomegalovirus (MCMV) M72 have been designated dUTPase homologs, and previous studies indicate UL72 is dispensable for replication and enzymatically inactive. Here, we report the initial characterization of MCMV M72. M72 does not possess dUTPase activity, and is expressed as a leaky-late gene product with multiple protein isoforms. Importantly, M72 augments MCMV replication in vitro and during the early stage of acute infection in vivo. We identify and confirm interaction of M72 with the eukaryotic chaperonin tailless complex protein -1 (TCP-1) ring complex (TRiC) or chaperonin containing tailless complex polypeptide 1 (CCT). Accumulating biochemical evidence indicates M72 forms homo-oligomers and is a substrate of TRiC/CCT. Taken together, we provide the first evidence of M72's contribution to viral pathogenesis, and identify a novel interaction with the TRiC/CCT complex.


Assuntos
Chaperonina com TCP-1/metabolismo , Interações Hospedeiro-Patógeno , Muromegalovirus/fisiologia , Multimerização Proteica , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Humanos , Camundongos , Mapeamento de Interação de Proteínas
6.
Proc Natl Acad Sci U S A ; 113(23): 6403-8, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217569

RESUMO

We report the specific collision of a single murine cytomegalovirus (MCMV) on a platinum ultramicroelectrode (UME, radius of 1 µm). Antibody directed against the viral surface protein glycoprotein B functionalized with glucose oxidase (GOx) allowed for specific detection of the virus in solution and a biological sample (urine). The oxidation of ferrocene methanol to ferrocenium methanol was carried out at the electrode surface, and the ferrocenium methanol acted as the cosubstrate to GOx to catalyze the oxidation of glucose to gluconolactone. In the presence of glucose, the incident collision of a GOx-covered virus onto the UME while ferrocene methanol was being oxidized produced stepwise increases in current as observed by amperometry. These current increases were observed due to the feedback loop of ferrocene methanol to the surface of the electrode after GOx reduces ferrocenium methanol back to ferrocene. Negative controls (i) without glucose, (ii) with an irrelevant virus (murine gammaherpesvirus 68), and (iii) without either virus do not display these current increases. Stepwise current decreases were observed for the prior two negative controls and no discrete events were observed for the latter. We further apply this method to the detection of MCMV in urine of infected mice. The method provides for a selective, rapid, and sensitive detection technique based on electrochemical collisions.


Assuntos
Citomegalovirus , Técnicas Eletroquímicas , Compostos Ferrosos/química , Glucose Oxidase/química , Glucose/química , Urina/virologia , Animais , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Camundongos Endogâmicos C57BL , Microeletrodos , Platina/química , Proteínas do Envelope Viral/imunologia , Vírion
7.
J Immunol ; 194(4): 1819-31, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25595793

RESUMO

Herpesviruses are DNA viruses harboring the capacity to establish lifelong latent-recurrent infections. There is limited knowledge about viruses targeting the innate DNA-sensing pathway, as well as how the innate system impacts on the latent reservoir of herpesvirus infections. In this article, we report that murine gammaherpesvirus 68 (MHV68), in contrast to α- and ß-herpesviruses, induces very limited innate immune responses through DNA-stimulated pathways, which correspondingly played only a minor role in the control of MHV68 infections in vivo. Similarly, Kaposi's sarcoma-associated herpesvirus also did not stimulate immune signaling through the DNA-sensing pathways. Interestingly, an MHV68 mutant lacking deubiquitinase (DUB) activity, embedded within the large tegument protein open reading frame (ORF)64, gained the capacity to stimulate the DNA-activated stimulator of IFN genes (STING) pathway. We found that ORF64 targeted a step in the DNA-activated pathways upstream of the bifurcation into the STING and absent in melanoma 2 pathways, and lack of the ORF64 DUB was associated with impaired delivery of viral DNA to the nucleus, which, instead, localized to the cytoplasm. Correspondingly, the ORF64 DUB active site mutant virus exhibited impaired ability to establish latent infection in wild-type, but not STING-deficient, mice. Thus, gammaherpesviruses evade immune activation by the cytosolic DNA-sensing pathway, which, in the MHV68 model, facilitates establishment of infections.


Assuntos
DNA Viral/imunologia , Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Imunidade Inata/imunologia , Latência Viral/imunologia , Animais , Citosol/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real
8.
Trends Microbiol ; 22(4): 199-207, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24565922

RESUMO

Programmed cell death is an important facet of host-pathogen interactions. Although apoptosis has long been implicated as the major form of programmed cell death in host defense, the past decade has seen the emergence of other forms of regulated death, including programmed necrosis. While the molecular mechanisms of programmed necrosis continue to be unveiled, an increasing number of viral and bacterial pathogens induce this form of death in host cells, with important consequences for infection, control, and pathogenesis. Moreover, pathogen strategies to manipulate or utilize this pathway are now being discovered. In this review, we focus on a variety of viral and bacterial pathogens where a role for programmed necrosis is starting to be appreciated. In particular, we focus on the mechanistic details of how the host or the pathogen might appropriate this pathway for its own benefit.


Assuntos
Bactérias/patogenicidade , Interações Hospedeiro-Patógeno , Necrose , Vírus/patogenicidade , Virulência
9.
Curr Opin Virol ; 3(3): 296-306, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23773332

RESUMO

Apoptosis and programmed necrosis balance each other as alternate first line host defense pathways against which viruses have evolved countermeasures. Intrinsic apoptosis, the critical programmed cell death pathway that removes excess cells during embryonic development and tissue homeostasis, follows a caspase cascade triggered at mitochondria and modulated by virus-encoded anti-apoptotic B cell leukemia (BCL)2-like suppressors. Extrinsic apoptosis controlled by caspase 8 arose during evolution to trigger executioner caspases directly, circumventing viral suppressors of intrinsic (mitochondrial) apoptosis and providing the selective pressure for viruses to acquire caspase 8 suppressors. Programmed necrosis likely evolved most recently as a 'trap door' adaptation to extrinsic apoptosis. Receptor interacting protein (RIP)3 kinase (also called RIPK3) becomes active when either caspase 8 activity or polyubiquitylation of RIP1 is compromised. This evolutionary dialog implicates caspase 8 as a 'supersensor' alternatively activating and suppressing cell death pathways.


Assuntos
Apoptose , Vírus de DNA/imunologia , Vírus de DNA/patogenicidade , Necrose , Animais , Humanos
10.
J Immunol ; 181(9): 6427-34, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18941233

RESUMO

DNA-dependent activator of IFN regulatory factors (IRF; DAI, also known as ZBP1 or DLM-1) is a cytosolic DNA sensor that initiates IRF3 and NF-kappaB pathways leading to activation of type I IFNs (IFNalpha, IFNbeta) and other cytokines. In this study, induction of NF-kappaB is shown to depend on the adaptor receptor-interacting protein kinase (RIP)1, acting via a RIP homotypic interaction motif (RHIM)-dependent interaction with DAI. DAI binds to and colocalizes with endogenous RIP1 at characteristic cytoplasmic granules. Suppression of RIP1 expression by RNAi abrogates NF-kappaB activation as well as IFNbeta induction by immunostimulatory DNA. DAI also interacts with RIP3 and this interaction potentiates DAI-mediated activation of NF-kappaB, implicating RIP3 in regulating this RHIM-dependent pathway. The role of DAI in activation of NF-kappaB in response to immunostimulatory DNA appears to be analogous to sensing of dsRNA by TLR3 in that both pathways involve RHIM-dependent signaling that is mediated via RIP1, reinforcing a central role for this adaptor in innate sensing of intracellular microbes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , DNA/fisiologia , Fatores Reguladores de Interferon/metabolismo , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/fisiologia , Motivos de Aminoácidos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/enzimologia , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Fatores Reguladores de Interferon/fisiologia , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA , Transdução de Sinais/imunologia
11.
J Virol ; 80(24): 11946-59, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17005668

RESUMO

Gamma-2 herpesviruses encode homologues of mammalian D-type cyclins (v-cyclins), which likely function to manipulate the cell cycle, thereby providing a cellular environment conducive to virus replication and/or reactivation from latency. We have previously shown that the v-cyclin of murine gammaherpesvirus 68 is an oncogene that binds and activates cellular cyclin-dependent kinases (CDKs) and is required for efficient reactivation from latency. To determine the contribution of v-cyclin-mediated cell cycle regulation to the viral life cycle, recombinant viruses in which specific point mutations (E133V or K104E) were introduced into the v-cyclin open reading frame were generated, resulting in the disruption of CDK binding and activation. While in vitro growth of these mutant viruses was unaffected, lytic replication in the lungs following low-dose intranasal inoculation was attenuated for both mutants deficient in CDK binding as well as virus in which the entire v-cyclin open reading frame was disrupted by the insertion of a translation termination codon. This replication defect was not apparent in spleens of mice following intraperitoneal inoculation, suggesting a cell type- and/or route-specific dependence on v-cyclin-CDK interactions during the acute phase of virus infection. Notably, although a v-cyclin-null virus was highly attenuated for reactivation from latency, the E133V v-cyclin CDK-binding mutant exhibited only a modest defect in virus reactivation from splenocytes, and neither the E133V nor K104E v-cyclin mutants were compromised in reactivation from peritoneal exudate cells. Taken together, these data suggest that lytic replication and reactivation in vivo are differentially regulated by CDK-dependent and CDK-independent functions of v-cyclin, respectively.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Gammaherpesvirinae/genética , Proteínas Virais/genética , Replicação Viral/fisiologia , Animais , Southern Blotting , Ciclinas/metabolismo , Immunoblotting , Pulmão/virologia , Camundongos , Mutagênese , Baço/virologia , Proteínas Virais/metabolismo , Replicação Viral/genética
12.
J Virol ; 80(3): 1592-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16415035

RESUMO

The gammaherpesvirus immediate-early genes are critical regulators of virus replication and reactivation from latency. Rta, encoded by gene 50, serves as the major transactivator of the lytic program and is highly conserved among all the gammaherpesviruses, including Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and murine gammaherpesvirus 68 (gammaHV68). Introduction of a translation stop codon in gammaHV68 gene 50 (gene 50.stop gammaHV68) demonstrated that Rta is essential for virus replication in vitro. To investigate the role that virus replication plays in the establishment and maintenance of latency, we infected mice with gene 50.stop gammaHV68. Notably, the gene 50.stop virus established a long-term infection in lung B cells following intranasal infection of mice but was unable to establish latency in the spleen. This complete block in the establishment of latency in the spleen was also seen when lytic virus production was inhibited by treating mice infected with wild-type virus with the antiviral drug cidofovir, implicating virus replication and not an independent function of Rta in the establishment of splenic latency. Furthermore, we showed that gene 50.stop gammaHV68 was unable to prime the immune system and was unable to protect against a challenge with wild-type gammaHV68, despite its ability to chronically infect lung B cells. These data indicate gammaherpesviruses that are unable to undergo lytic replication in vivo may not be viable vaccine candidates despite the detection of cells harboring viral genome at late times postinfection.


Assuntos
Rhadinovirus/genética , Rhadinovirus/imunologia , Animais , Antivirais/farmacologia , Cidofovir , Códon de Terminação , Citosina/análogos & derivados , Citosina/farmacologia , Genes Virais , Vacinas contra Herpesvirus/genética , Vacinas contra Herpesvirus/imunologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Organofosfonatos/farmacologia , Rhadinovirus/patogenicidade , Transativadores/genética , Vacinação , Proteínas Virais/genética , Latência Viral/efeitos dos fármacos , Latência Viral/genética
13.
Virology ; 341(2): 271-83, 2005 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16102793

RESUMO

All known gamma2-herpesviruses encode a cyclin homolog with significant homology to mammalian D-type cyclins. The murine gammaherpesvirus 68 (gammaHV68) viral cyclin (v-cyclin) has been shown to be oncogenic when expression is targeted to thymocytes in transgenic mice and to be critical for virus reactivation from latency. Here, we investigate the interaction of the gammaHV68 v-cyclin with cellular cyclin-dependent kinases (cdks). We show that, in contrast to the Kaposi's sarcoma-associated herpesvirus (KSHV) v-cyclin, the gammaHV68 v-cyclin preferentially interacts with cdk2 and cdc2 but does not interact with either cdk4 or cdk6. Mutation of conserved residues, predicted to be involved in cdk binding based on the gammaHV68 v-cyclin:cdk2 crystal structure, resulted in the loss of both cdk binding and the ability to mediate phosphorylation of substrates. Like the KSHV v-cyclin, the gammaHV68 v-cyclin appears to confer expanded substrate specificity to the cellular cdk binding partners. As expected, the gammaHV68 v-cyclin:cdk complexes are able to target phosphorylation of histone H1, the retinoblastoma protein (pRb), and p27(Kip1) as assessed using in vitro kinase assays. Notably, hyperphosphorylation of pRb was observed during wt gammaHV68 replication in serum-starved murine fibroblasts, but not in cells that were either mock-infected or infected with a v-cyclin null gammaHV68. In addition, infection of serum-starved murine fibroblasts also results in a v-cyclin-dependent increase in cdk2-associated kinase activity and a concomitant decrease in the levels of p27(Kip1). Taken together, the latter studies served to validate the results of the in vitro kinase assays. Finally, in vitro kinase assays revealed that the gammaHV68 v-cyclin:cdk complexes can also phosphorylate p21(Cip1), Bcl-2, and p53. The latter suggests that, at least in vitro, the gammaHV68 v-cyclin exhibits functional characteristics of both cyclin E and cyclin A.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Rhadinovirus/fisiologia , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fibroblastos/virologia , Histonas/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Fosforilação , Fosfotransferases/análise , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo
14.
J Virol ; 79(15): 9480-91, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16014911

RESUMO

Murine gammaherpesvirus 68 (gammaHV68) provides a tractable small animal model with which to study the mechanisms involved in the establishment and maintenance of latency by gammaherpesviruses. Similar to the human gammaherpesvirus Epstein-Barr virus (EBV), gammaHV68 establishes and maintains latency in the memory B-cell compartment following intranasal infection. Here we have sought to determine whether, like EBV infection, gammaHV68 infection in vivo is associated with B-cell proliferation during the establishment of chronic infection. We show that gammaHV68 infection leads to significant splenic B-cell proliferation as late as day 42 postinfection. Notably, gammaHV68 latency was found predominantly in the proliferating B-cell population in the spleen on both days 16 and 42 postinfection. Furthermore, virus reactivation upon ex vivo culture was heavily biased toward the proliferating B-cell population. DNA methyltransferase 1 (Dnmt1) is a critical maintenance methyltransferase which, during DNA replication, maintains the DNA methylation patterns of the cellular genome, a process that is essential for the survival of proliferating cells. To assess whether the establishment of gammaHV68 latency requires B-cell proliferation, we characterized infections of conditional Dnmt1 knockout mice by utilizing a recombinant gammaHV68 that expresses Cre-recombinase (gammaHV68-Cre). In C57BL/6 mice, the gammaHV68-Cre virus exhibited normal acute virus replication in the lungs as well as normal establishment and reactivation from latency. Furthermore, the gammaHV68-Cre virus also replicated normally during the acute phase of infection in the lungs of Dnmt1 conditional mice. However, deletion of the Dnmt1 alleles from gammaHV68-infected cells in vivo led to a severe ablation of viral latency, as assessed on both days 16 and 42 postinfection. Thus, the studies provide direct evidence that the proliferation of latently infected B cells is critical for the establishment of chronic gammaHV68 infection.


Assuntos
Linfócitos B/imunologia , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/imunologia , Animais , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/genética , Fatores de Tempo , Latência Viral
15.
J Virol ; 79(8): 5227-31, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15795307

RESUMO

Murine gammaherpesvirus 68 (gammaHV68) infection of mice results in the establishment of a chronic infection, which is largely maintained through latent infection of B lymphocytes. Acute virus replication is almost entirely cleared by 2 weeks postinfection. Spontaneous reactivation of gammaHV68 from latently infected splenocytes upon ex vivo culture can readily be detected at the early stages of infection (e.g., day 16). However, by 6 weeks postinfection, very little spontaneous reactivation is detected upon explant into tissue culture. Here we report that stimulation of latently infected splenic B cells harvested at late times postinfection with cross-linking surface immunoglobulin (Ig), in conjunction with anti-CD40 antibody treatment, triggers virus reactivation. As expected, this treatment resulted in B-cell activation, as assessed by upregulation of CD69 on B cells, and ultimately B-cell proliferation. Since anti-Ig/anti-CD40 stimulation resulted in splenic B-cell proliferation, we assessed whether this reactivation stimulus could overcome the previously characterized defect in virus reactivation of a v-cyclin null gammaHV68 mutant. This analysis demonstrated that anti-Ig/anti-CD40 stimulation could drive reactivation of the v-cyclin null mutant virus in latently infected splenocytes, but not to the levels observed with wild-type gammaHV68. Thus, there appears to be a role for the v-cyclin in B cells following anti-Ig/anti-CD40 stimulation independent of the induction of the cell cycle. Finally, to assess signals that are not mediated through the B-cell receptor, we demonstrate that addition of lipopolysaccharide to explanted splenocyte cultures also enhanced virus reactivation. These studies complement and extend previous analyses of Epstein-Barr virus and Kaposi's sarcoma-associated virus reactivation from latently infected cell lines by investigating reactivation of gammaHV68 from latently infected primary B cells recovered from infected hosts.


Assuntos
Linfócitos B/imunologia , Linfócitos B/virologia , Gammaherpesvirinae/fisiologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Linfócitos B/efeitos dos fármacos , Antígenos CD40/imunologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária , Camundongos , Baço/virologia
16.
Plant Physiol ; 132(4): 1925-40, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12913149

RESUMO

When guard cell protoplasts (GCPs) of tree tobacco [Nicotiana glauca (Graham)] are cultured at 32 degrees C with an auxin (1-napthaleneacetic acid) and a cytokinin (6-benzylaminopurine), they reenter the cell cycle, dedifferentiate, and divide. GCPs cultured similarly but at 38 degrees C and with 0.1 micro M +/- -cis,trans-abscisic acid (ABA) remain differentiated. GCPs cultured at 38 degrees C without ABA dedifferentiate partially but do not divide. Cell survival after 1 week is 70% to 80% under all of these conditions. In this study, we show that GCPs cultured for 12 to 24 h at 38 degrees C accumulate heat shock protein 70 and develop a thermotolerance that, upon transfer of cells to 32 degrees C, enhances cell survival but inhibits cell cycle reentry, dedifferentiation, and division. GCPs dedifferentiating at 32 degrees C require both 1-napthaleneacetic acid and 6-benzylaminopurine to survive, but thermotolerant GCPs cultured at 38 degrees C +/- ABA do not require either hormone for survival. Pulse-labeling experiments using 5-bromo-2-deoxyuridine indicate that culture at 38 degrees C +/- ABA prevents dedifferentiation of GCPs by blocking cell cycle reentry at G1/S. Cell cycle reentry at 32 degrees C is accompanied by loss of a 41-kD polypeptide that cross-reacts with antibodies to rat (Rattus norvegicus) extracellular signal-regulated kinase 1; thermotolerant GCPs retain this polypeptide. A number of polypeptides unique to thermotolerant cells have been uncovered by Boolean analysis of two-dimensional gels and are targets for further analysis. GCPs of tree tobacco can be isolated in sufficient numbers and with the purity required to study plant cell thermotolerance and its relationship to plant cell survival, growth, dedifferentiation, and division in vitro.


Assuntos
Adaptação Fisiológica , Ciclo Celular , Nicotiana/citologia , Folhas de Planta/citologia , Protoplastos/citologia , Temperatura , Ácido Abscísico/farmacologia , Animais , Bromodesoxiuridina/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Choque Térmico HSP70/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Protoplastos/efeitos dos fármacos , Ratos , Fase S , Fatores de Tempo , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA