Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Orthop ; 9(1): 116, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464727

RESUMO

PURPOSE: Meniscus tears are one of the most frequent orthopedic knee injuries, which are currently often treated performing meniscectomy. Clinical concerns comprise progressive degeneration of the meniscus tissue, a change in knee biomechanics, and an early onset of osteoarthritis. To overcome these problems, meniscal transplant surgery can be performed. However, adequate meniscal replacements remain to be a great challenge. In this research, we propose the use of a decellularized and sterilized human meniscus allograft as meniscal replacement. METHODS: Human menisci were subjected to a decellularization protocol combined with sterilization using supercritical carbon dioxide (scCO2). The decellularization efficiency of human meniscus tissue was evaluated via DNA quantification and Hematoxylin & Eosin (H&E) and DAPI staining. The mechanical properties of native, decellularized, and decellularized + sterilized meniscus tissue were evaluated, and its composition was determined via collagen and glycosaminoglycan (GAG) quantification, and a collagen and GAG stain. Additionally, cytocompatibility was determined in vitro. RESULTS: Human menisci were decellularized to DNA levels of ~ 20 ng/mg of tissue dry weight. The mechanical properties and composition of human meniscus were not significantly affected by decellularization and sterilization. Histologically, the decellularized and sterilized meniscus tissue had maintained its collagen and glycosaminoglycan structure and distribution. Besides, the processed tissues were not cytotoxic to seeded human dermal fibroblasts in vitro. CONCLUSIONS: Human meniscus tissue was successfully decellularized, while maintaining biomechanical, structural, and compositional properties, without signs of in vitro cytotoxicity. The ease at which human meniscus tissue can be efficiently decellularized, while maintaining its native properties, paves the way towards clinical use.

2.
J Mech Behav Biomed Mater ; 135: 105452, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122497

RESUMO

Approximately 1% of active individuals participating in sports rupture their anterior cruciate ligaments (ACL) every year, which is currently reconstructed using tendon autografts. Upon reconstruction, clinical issues of concern are ACL graft rupture, persistent knee instability, limited return to sports, and early onset of osteoarthritis (OA). This happens because tendon autografts do not have the same compositional, structural, and mechanical properties as a native ACL. To overcome these problems, we propose to use decellularized bone-ACL-bone allografts in ACL reconstruction (ACLR) as a mechanically robust, biocompatible, and immunologically safe alternative to autografts. Here, a decellularization protocol combined with sterilization using supercritical carbon dioxide (scCO2) was used to thoroughly decellularize porcine and human ACLs attached to tibial and femoral bone blocks. The specimens were named ultrACLean and their compositional, structural, and mechanical properties were determined. Our results indicate that: 1) decellularization of ultrACLean allografts leads to the removal of nearly 97% of donor cells, 2) ultrACLean has mechanical properties which are not different to native ACL, 3) ultrACLean maintained similar collagen content and decreased GAG content compared to native ACL, and 4) ultrACLean is not cytotoxic to seeded tendon-derived cells in vitro. Results from an in vivo pilot experiment showed that ultrACLean is biocompatible and elicits a moderate immunological response. In summary, ultrACLean has proven to be a mechanically competent and biocompatible graft with the potential to be used in ACLR surgery.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Aloenxertos/cirurgia , Animais , Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Dióxido de Carbono , Colágeno , Humanos , Ruptura , Esterilização/métodos , Suínos
3.
Biofabrication ; 13(2)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33166949

RESUMO

The musculoskeletal system is essential for maintaining posture, protecting organs, facilitating locomotion, and regulating various cellular and metabolic functions. Injury to this system due to trauma or wear is common, and severe damage may require surgery to restore function and prevent further harm. Autografts are the current gold standard for the replacement of lost or damaged tissues. However, these grafts are constrained by limited supply and donor site morbidity. Allografts, xenografts, and alloplastic materials represent viable alternatives, but each of these methods also has its own problems and limitations. Technological advances in three-dimensional (3D) printing and its biomedical adaptation, 3D bioprinting, have the potential to provide viable, autologous tissue-like constructs that can be used to repair musculoskeletal defects. Though bioprinting is currently unable to develop mature, implantable tissues, it can pattern cells in 3D constructs with features facilitating maturation and vascularization. Further advances in the field may enable the manufacture of constructs that can mimic native tissues in complexity, spatial heterogeneity, and ultimately, clinical utility. This review studies the use of 3D bioprinting for engineering bone, cartilage, muscle, tendon, ligament, and their interface tissues. Additionally, the current limitations and challenges in the field are discussed and the prospects for future progress are highlighted.


Assuntos
Bioimpressão , Bioimpressão/métodos , Osso e Ossos , Cartilagem , Humanos , Impressão Tridimensional , Engenharia Tecidual/métodos
4.
J Biomed Mater Res B Appl Biomater ; 100(2): 400-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22179969

RESUMO

Collagen-based biomaterials are a viable option for tendon reconstruction and repair. However, the weak mechanical strength of collagen constructs is a major limitation. We have previously reported a novel methodology to form highly oriented electrochemically aligned collagen (ELAC) threads with mechanical properties converging on those of the natural tendon. In this study, we assessed the in vivo response of rabbit patellar tendon (PT) to braided ELAC bioscaffolds. Rabbit PTs were incised longitudinally and the ELAC bioscaffold was inlaid in one limb along the length of the tendon. The contralateral limb served as the sham-operated control. Rabbits were euthanized at 4 or 8 months postoperatively. High-resolution radiographs revealed the absence of ectopic bone formation around the bioscaffolds. Four months post-implantation, the histological sections showed that the ELAC bioscaffold underwent limited degradation and was associated with a low-grade granulomatous inflammation. Additionally, quantitative histology revealed that the cross-sectional areas of PTs with the ELAC bioscaffold were 29% larger compared with the controls. Furthermore, ELAC-treated PTs were significantly stiffer compared with the controls. The volume fraction of the tendon fascicle increased in the ELAC-treated PT compared with the controls. By 8 months, the ELAC bioscaffold was mostly absorbed and the enlargement in the area of tendons with implants subsided along with the resolution of the granulomatous inflammation. We conclude that ELAC is biocompatible and biodegradable and has the potential to be used as a biomaterial for tendon tissue engineering applications.


Assuntos
Colágeno/química , Teste de Materiais/métodos , Traumatismos dos Tendões , Tendões , Alicerces Teciduais/química , Animais , Técnicas Eletroquímicas , Feminino , Coelhos , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/terapia , Tendões/metabolismo , Tendões/patologia
5.
J Biomed Mater Res A ; 94(4): 1070-9, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20694974

RESUMO

There are approximately 33 million injuries involving musculoskeletal tissues (including tendons and ligaments) every year in the United States. In certain cases the tendons and ligaments are damaged irreversibly and require replacements that possess the natural functional properties of these tissues. As a biomaterial, collagen has been a key ingredient in tissue engineering scaffolds. The application range of collagen in tissue engineering would be greatly broadened if the assembly process could be better controlled to facilitate the synthesis of dense, oriented tissue-like constructs. An electrochemical method has recently been developed in our laboratory to form highly oriented and densely packed collagen bundles with mechanical strength approaching that of tendons. However, there is limited information whether this electrochemically aligned collagen bundle (ELAC) presents advantages over randomly oriented bundles in terms of cell response. Therefore, the current study aimed to assess the biocompatibility of the collagen bundles in vitro, and compare tendon-derived fibroblasts (TDFs) and bone marrow stromal cells (MSCs) in terms of their ability to populate and migrate on the single and braided ELAC bundles. The results indicated that the ELAC was not cytotoxic; both cell types were able to populate and migrate on the ELAC bundles more efficiently than that observed for random collagen bundles. The braided ELAC constructs were efficiently populated by both TDFs and MSCs in vitro. Therefore, both TDFs and MSCs can be used with the ELAC bundles for tissue engineering purposes.


Assuntos
Células da Medula Óssea/citologia , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Colágeno/farmacologia , Fibroblastos/citologia , Tendões/citologia , Engenharia Tecidual/métodos , Animais , Morte Celular/efeitos dos fármacos , Colagenases/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Fibroblastos/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Ratos Long-Evans , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA