Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527094

RESUMO

The coronavirus papain-like protease (PLpro) is crucial for viral replicase polyprotein processing. Additionally, PLpro can subvert host defense mechanisms by its deubiquitinating (DUB) and deISGylating activities. To elucidate the role of these activities during SARS-CoV-2 infection, we introduced mutations that disrupt binding of PLpro to ubiquitin or ISG15. We identified several mutations that strongly reduced DUB activity of PLpro, without affecting viral polyprotein processing. In contrast, mutations that abrogated deISGylating activity also hampered viral polyprotein processing and when introduced into the virus these mutants were not viable. SARS-CoV-2 mutants exhibiting reduced DUB activity elicited a stronger interferon response in human lung cells. In a mouse model of severe disease, disruption of PLpro DUB activity did not affect lethality, virus replication, or innate immune responses in the lungs. This suggests that the DUB activity of SARS-CoV-2 PLpro is dispensable for virus replication and does not affect innate immune responses in vivo. Interestingly, the DUB mutant of SARS-CoV replicated to slightly lower titers in mice and elicited a diminished immune response early in infection, although lethality was unaffected. We previously showed that a MERS-CoV mutant deficient in DUB and deISGylating activity was strongly attenuated in mice. Here, we demonstrate that the role of PLpro DUB activity during infection can vary considerably between highly pathogenic coronaviruses. Therefore, careful considerations should be taken when developing pan-coronavirus antiviral strategies targeting PLpro.


Assuntos
COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Humanos , Animais , Camundongos , Proteases Semelhantes à Papaína de Coronavírus/genética , SARS-CoV-2/metabolismo , Imunidade Inata , Papaína/genética , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Replicação Viral , Poliproteínas
2.
Virology ; 484: 69-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26071926

RESUMO

The intracellular replication and molecular virulence mechanisms of Rabbit haemorrhagic disease virus (RHDV) are poorly understood, mainly due to the lack of an effective cell culture system for this virus. To increase our understanding of RHDV molecular biology, the subcellular localisation of recombinant non-structural RHDV proteins was investigated in transiently transfected rabbit kidney (RK-13) cells. We provide evidence for oligomerisation of p23, and an ability of the viral protease to cleave the p16:p23 junction in trans, outside the context of the nascent polyprotein chain. Notably, expression of the viral polymerase alone and in the context of the entire RHDV polyprotein resulted in a redistribution of the Golgi network. This suggests that, similar to other positive-strand RNA viruses, RHDV may recruit membranes of the secretory pathway during replication, and that the viral polymerase may play a critical role during this process.


Assuntos
Vírus da Doença Hemorrágica de Coelhos/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Vírus da Doença Hemorrágica de Coelhos/genética , Interações Hospedeiro-Patógeno , Poliproteínas/genética , Poliproteínas/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA