Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(24): 25357-25367, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078868

RESUMO

Electrochemical-oxidation-driven reconstruction has emerged as an efficient approach for developing advanced materials, but the reconstructed microstructure still faces challenges including inferior conductivity, unsatisfying intrinsic activity, and active-species dissolution. Herein, we present hybrid reconstruction chemistry that synergistically couples electrochemical oxidation with electrochemical polymerization (EOEP) to overcome these constraints. During the EOEP process, the metal hydroxides undergo rapid reconstruction and dynamically couple with polypyrrole (PPy), resulting in an interface-enriched microenvironment. We observe that the interaction between PPy and the reconstructed metal center (i.e., Mn > Ni, Co) is strongly correlated. Theoretical calculation results demonstrate that the strong interaction between Mn sites and PPy breaks the intrinsic limitation of MnO2, rendering MnO2 with a metallic property for fast charge transfer and enhancing the ion-adsorption dynamics. Operando Raman measurement confirms the promise of EOEP-treated Mn(OH)2 (E-MO/PPy) to stably work under a 1.2 V potential window. The tailored E-MO/PPy exhibits a high capacitance of 296 F g-1 at a large current density of 100 A g-1. Our strategy presents breakthroughs in upgrading the electrochemical reconstruction technique, which enables both activity and kinetics engineering of electrode materials for better performance in energy-related fields.

2.
Science ; 382(6670): 547-553, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917685

RESUMO

In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kß x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.

3.
Angew Chem Int Ed Engl ; 62(14): e202216232, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36748922

RESUMO

Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2 H4 evolution yield of 17.7 µmol g-1 ⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C2 H4 effectively.

4.
ACS Appl Mater Interfaces ; 14(25): 29039-29051, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35711091

RESUMO

This study investigates the charge-transport properties of poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly(ProDOT-alt-biEDOT) (PE2) films doped with a set of iron(III)-based dopants and as a function of dopant concentration. X-ray photoelectron spectroscopy measurements show that doping P3HT with 12 mM iron(III) solutions leads to similar extents of oxidation, independent of the dopant anion; however, the electrical conductivities and Seebeck coefficients vary significantly (5 S cm-1 and + 82 µV K-1 with tosylate and 56 S cm-1 and +31 µV K-1 with perchlorate). In contrast, PE2 thermoelectric transport properties vary less with respect to the iron(III) anion chemistry, which is attributed to PE2 having a lower onset of oxidation than P3HT. Consequentially, PE2 doped with 12 mM iron(III) perchlorate obtained an electrical conductivity of 315 S cm-1 and a Seebeck coefficient of + 7 µV K-1. Modeling these thermoelectric properties with the semilocalized transport (SLoT) model suggests that tosylate-doped P3HT remains mostly in the localized transport regime, attributed to more disorder in the microstructure. In contrast perchlorate-doped P3HT and PE2 films exhibited thermally deactivated electrical conductivities and metal-like transport at high doping levels over limited temperature ranges. Finally, the SLoT model suggests that PE2 has the potential to be more electrically conductive than P3HT due to PE2's ability to achieve higher extents of oxidation and larger shifts in the reduced Fermi energy levels.

5.
ACS Appl Mater Interfaces ; 12(14): 16922-16929, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182425

RESUMO

Membrane-based separations can mitigate the capital- and energy-intensive challenges associated with traditional thermally driven processes. To further push the boundary of gas separations, mixed matrix membranes (MMMs) have been extensively exploited; however, identifying an optimal nanofiller to boost the separation performance of MMMs beyond Robeson permeability-selectivity upper bounds remains an ongoing challenge. Here, a new class of MMMs based on pyrazine-fused crystalline porous graphitic frameworks (PGFs) is reported. At a loading of 6 wt % PGFs, the MMMs surpass the current H2/CH4 Robeson upper bound, ideally suited for applications such as H2 regeneration. In addition, the fabricated MMMs exhibit appealing CO2 separation performance, closely approaching the current Robeson upper bounds for CO2 separation. Compared with the pristine polymeric membranes, the PGF-based MMMs display a record-high enhancement of gas permeability over 120% while maintaining intrinsic gas selectivities. Highlighting the crucial role of the crystallinity of nanofillers, this study demonstrates a facile and effective approach in formulating high-performance MMMs, complementing state-of-the-art membrane formation processes. The design principles open the door to energy-efficient separations of gas mixtures with enhanced productivity compatible with the current membrane manufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA