Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(2): 714-723, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36692364

RESUMO

c-Src kinase is a multidomain non-receptor tyrosine kinase that aberrantly phosphorylates several signaling proteins in cancers. Although the structural properties of the regulatory domains (SH3-SH2) and the catalytic kinase domain have been extensively characterized, there is less knowledge about the N-terminal disordered region (SH4UD) and its interactions with the other c-Src domains. Here, we used domain-selective isotopic labeling combined with the small-angle neutron scattering contrast matching technique to study SH4UD interactions with SH3-SH2. Our results show that in the presence of SH4UD, the radius of gyration (Rg) of SH3-SH2 increases, indicating that it has a more extended conformation. Hamiltonian replica exchange molecular dynamics simulations provide a detailed molecular description of the structural changes in SH4UD-SH3-SH2 and show that the regulatory loops of SH3 undergo significant conformational changes in the presence of SH4UD, while SH2 remains largely unchanged. Overall, this study highlights how a disordered region can drive a folded region of a multidomain protein to become flexible, which may be important for allosteric interactions with binding partners. This may help in the design of therapeutic interventions that target the regulatory domains of this important family of kinases.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas pp60(c-src) , Domínio Catalítico , Domínios Proteicos
2.
Biomacromolecules ; 20(10): 3989-4000, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31503464

RESUMO

Despite being one of the most potent chemotherapeutics, doxorubicin (DOX) facilitates cardiac toxicity by irreversibly damaging the cardiac muscle as well as severely dysregulating the immune system and impairing the resolution of cardiac inflammation. Herein, we report synthesis and aqueous self-assembly of nanosized polymersomes from temperature-responsive poly(3-methyl-N-vinylcaprolactam)-block-poly(N-vinylpyrrolidone) (PMVC-PVPON) diblock copolymers and demonstrate their potential to minimize DOX cardiotoxicity compared to liposomal DOX. RAFT polymerization of vinylpyrrolidone and 3-methyl-N-vinylcaprolactam, which are structurally similar monomers but have drastically different hydrophobicity, allows decreasing the cloud point of PMVCm-PVPONn copolymers below 20 °C. The lower critical solution temperature (LCST) of the PMVC58-PVPONn copolymer varied from 19.2 to 18.6 and to 15.2 °C by decreasing the length of the hydrophilic PVPONn block from n = 98 to n = 65 and to n = 20, respectively. The copolymers assembled into stable vesicles at room temperature when PVPON polymerization degrees were 65 and 98. Anticancer drug DOX was entrapped with high efficiency into the aqueous PMVC58-PVPON65 polymersomal core surrounded by the hydrophobic temperature-sensitive PMVC shell and the hydrophilic PVPON corona. Unlike many liposomal, micellar, or synthetic drug delivery systems, these polymersomes exhibit an exceptionally high loading capacity of DOX (49%) and encapsulation efficiency (95%) due to spontaneous loading of the drug at room temperature from aqueous DOX solution. We also show that C57BL/6J mice injected with the lethal dose of DOX at 15 mg kg-1 did not survive the 14 day treatment, resulting in 100% mortality. The DOX-loaded PMVC58-PVPON65 polymersomes did not cause any mortality in mice indicating that they can be used for successful DOX encapsulation. The gravimetric analyses of the animal organs from mice treated with liposome-encapsulated DOX (Lipo-DOX) and PMVC58-PVPON65 polymersomes (Poly-DOX) revealed that the Lipo-DOX injection caused some toxicity manifesting as decreased body weight compared to Poly-DOX and saline control. Masses of the left ventricle of the heart, lung, and spleen reduced in the Lipo-DOX-treated mice compared to the nontoxic saline control, while no significant decrease of those masses was observed for the Poly-DOX-treated mice. Our results provide evidence for superior stability of synthetic polymersomes in vivo and show promise for the development of next-generation drug carriers with minimal side effects.


Assuntos
Antineoplásicos/química , Cardiotoxicidade/prevenção & controle , Doxorrubicina/química , Polímeros/química , Pirrolidinonas/química , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimerização , Temperatura
3.
Biophys J ; 114(3): 602-608, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29414706

RESUMO

Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, and octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-ß-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. Our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.


Assuntos
Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/metabolismo , Membrana Celular/enzimologia , Maltose/análogos & derivados , Nêutrons , Espalhamento a Baixo Ângulo , Animais , Humanos , Maltose/química , Maltose/metabolismo , Modelos Moleculares , Especificidade por Substrato
4.
J Am Chem Soc ; 133(33): 12906-9, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21761879

RESUMO

The helical and tubular structures self-assembled from proteins have inspired scientists to design synthetic building blocks that can be "polymerized" into supramolecular polymers through coordinated noncovalent interactions. However, cooperative supramolecular polymerization from large, synthetic macromolecules remains a challenge because of the difficulty of controlling the structure and interactions of macromolecular monomers. Herein we report the synthesis of polypeptide-grafted comb polymers and the use of their tunable secondary interactions in solution to achieve controlled supramolecular polymerization. The resulting tubular supramolecular structures, with external diameters of hundreds of nanometers and lengths of tens of micrometers, are stable and resemble to some extent biological superstructures assembled from proteins. This study shows that highly specific intermolecular interactions between macromolecular monomers can enable the cooperative growth of supramolecular polymers. The general applicability of this strategy was demonstrated by carrying out supramolecular polymerization from gold nanoparticles grafted with the same polypeptides on the surface.


Assuntos
Peptídeos/química , Polimerização , Polímeros/química , Ouro , Substâncias Macromoleculares/química , Nanopartículas Metálicas , Estrutura Molecular
5.
J Biol Chem ; 286(37): 32801-9, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21784865

RESUMO

Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4-5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Trichoderma/enzimologia , Celulose 1,4-beta-Celobiosidase/metabolismo , Proteínas Fúngicas , Concentração de Íons de Hidrogênio , Nêutrons , Estrutura Terciária de Proteína , Espalhamento de Radiação , Relação Estrutura-Atividade
6.
J Phys Chem B ; 111(16): 4211-9, 2007 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-17391018

RESUMO

Small-angle X-ray scattering (SAXS) was used to investigate the structure of isolated photosystem I (PSI) complexes stabilized in detergent solution. Two different types of PSI preparation were investigated. In the first preparation, thylakoid membranes were solubilized with Triton X100 and purified by density gradient centrifugation. SAXS data indicated large scattering objects or microphases that can be described as sheets with approximately 68 A thickness and a virtually infinite lateral extension. The observed thickness agreed well with the dimension of a PSI molecule across the thylakoid membrane. In the second preparation, PSI was isolated as before but was further purified by anion exchange chromatography resulting in functional complexes consisting of single PSI units with attached surfactant as evidenced by the particle volume and gyration radius extracted from the SAXS data. Several approaches were used to model the solution conformation of the complex. Three different ellipsoidal modeling approaches, a uniform density ellipsoid of revolution, a triaxial solid ellipsoid, and a core-shell model, found extended structures with dimensions that were not consistent with the PSI crystal structure (Ben-Shem, A.; et al. Nature 2003, 426, 630-635). Additionally, the SAXS data could not be modeled using the crystal structure embedded in a disk of detergent. The final approach considered the possibility that protein was partially unfolded by the detergent. The data were modeled using a "beads-on-a-string" approach that describes detergent micelles associated with the unfolded polypeptide chains. This model reproduced the position and relative amplitude of a peak present in the SAXS data at 0.16 A(-1) but was not consistent with the data at larger length scales. We conclude that the polypeptide subunits at the periphery of the PSI complex were partially unfolded and associated with detergent micelles while the catalytically active core of the PSI complex remained structurally intact. This interpretation of the solution structure of isolated PSI complexes has broader implications for the investigation of the interactions of detergents and protein, especially for crystallization studies.


Assuntos
Detergentes/química , Proteínas de Membrana/química , Complexo de Proteína do Fotossistema I/química , Cristalização , Eletroforese em Gel de Poliacrilamida , Espalhamento de Radiação , Raios X
7.
Biopolymers ; 74(4): 316-27, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15211500

RESUMO

The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with beta-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 microm beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.


Assuntos
Fibroínas/química , Fibroínas/efeitos da radiação , Proteínas de Insetos/química , Proteínas de Insetos/efeitos da radiação , Substâncias Macromoleculares , Peso Molecular , Conformação Proteica , Seda , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Estresse Mecânico , Síncrotrons , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA